1、椭圆经典例题分类汇总1.椭圆第一定义的应用例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程分析:题目没有指出焦点的位置,要考虑两种位置解:(1)当为长轴端点时,椭圆的标准方程为:;(2)当为短轴端点时,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况例2 已知椭圆的离心率,求的值分析:分两种情况进行讨论解:当椭圆的焦点在轴上时,得由,得当椭圆的焦点在轴上时,得由,得,即满足条件的或说明:本题易出现漏解排除错误的办法是:因为与9的大小关系不定,所以椭圆的焦点可能在轴上,也可能在轴上故必须进行讨论例3 已知
2、方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例4 已知表示焦点在轴上的椭圆,求的取值范围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解:方程可化为因为焦点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2)由焦点在轴上,知, (3)求的取值范围时,应注意题目中的条件例5 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于
3、点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法2.焦半径及焦三角的应用例1 已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由解:假设存在,设,由已知条件得,左准线的方程是,又由焦半径公式知:,整理得解之得或 另一方面 则与矛盾,所以满足条件的点不存在例2 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要
4、结合余弦定理及定义求角的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: 由椭圆定义知: ,则得 故 3.第二定义应用例1 椭圆的右焦点为,过点,点在椭圆上,当为最小值时,求点的坐标分析:本题的关键是求出离心率,把转化为到右准线的距离,从而得最小值一般地,求均可用此法解:由已知:,所以,右准线过作,垂足为,交椭圆于,故显然的最小值为,即为所求点,因此,且在椭圆上故所以说明:本题关键在于未知式中的“2”的处理事实上,如图,即是到右准线的距离的一半,即图中的,问题转化为求椭圆上一点,使到的距离与到右准线距离之和取最小值例2 已知椭圆上一点到
5、右焦点的距离为,求到左准线的距离分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解解法一:由,得,由椭圆定义,得由椭圆第二定义,为到左准线的距离,即到左准线的距离为解法二:,为到右准线的距离,又椭圆两准线的距离为到左准线的距离为说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性否则就会产生误解椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义例3已知椭圆内有一点,、分别是椭圆的左、右焦点,点是椭圆上一点(1)求的最大值、最小值及对应的点坐标;(2)求的最小值
6、及对应的点的坐标分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法二是数形结合,即几何方法本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解解:(1)如上图,设是椭圆上任一点,由,等号仅当时成立,此时、共线由,等号仅当时成立,此时、共线建立、的直线方程,解方程组得两交点、综上所述,点与重合时,取最小值,点与重合时,取最大值(2)如下图,设是椭圆上任一点,作垂直椭圆右准线,为垂足,由,由椭圆第二定义知,要使其和最小需有、共线,即求到右准线距离右准线方程为到右准线距离为此时点纵坐标与点纵坐标相同为1,代入椭圆得
7、满足条件的点坐标说明:求的最小值,就是用第二定义转化后,过向相应准线作垂线段巧用焦点半径与点准距互化是解决有关问题的重要手段4.参数方程应用例1 求椭圆上的点到直线的距离的最小值分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值解:椭圆的参数方程为设椭圆上的点的坐标为,则点到直线的距离为当时,说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程例2 (1)写出椭圆的参数方程;(2)求椭圆内接矩形的最大面积分析:本题考查椭圆的参数方程及其应用为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题解:(1) (2)设椭圆内接
8、矩形面积为,由对称性知,矩形的邻边分别平行于轴和轴,设为矩形在第一象限的顶点,则故椭圆内接矩形的最大面积为12说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便例3椭圆与轴正向交于点,若这个椭圆上总存在点,使(为坐标原点),求其离心率的取值范围分析:、为定点,为动点,可以点坐标作为参数,把,转化为点坐标的一个等量关系,再利用坐标的范围建立关于、的一个不等式,转化为关于的不等式为减少参数,易考虑运用椭圆参数方程解:设椭圆的参数方程是,则椭圆上的点,即,解得或,(舍去),又,又,说明:若已知椭圆离心率范围,求证在椭圆上总存在点使如何证明?5.相
9、交情况下-弦长公式的应用例1 已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:(1)把直线方程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例2 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长分析:
10、可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为由直线方程与椭圆方程联立得:设,为方程两根,所以, 从而(法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以(法3)利用焦半径求解先根据直线与椭圆联立的方程求出方程的两根,它们分别是,的横坐标再根据焦半径,从而求出6.相交情况下点差法的应用例1 已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程解:由题意
11、,设椭圆方程为,由,得,为所求说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题例2 已知椭圆,求过点且被平分的弦所在的直线方程分析一:已知一点求直线,关键是求斜率,故设斜率为,利用条件求解法一:设所求直线的斜率为,则直线方程为代入椭圆方程,并整理得由韦达定理得是弦中点,故得所以所求直线方程为分析二:设弦两端坐标为、,列关于、的方程组,从而求斜率:解法二:设过的直线与椭圆交于、,则由题意得得 将、代入得,即直线的斜率为所求直线方程为说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨
12、迹;过定点的弦中点轨迹(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”有关二次曲线问题也适用例3 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意
13、,为所求(2)将代入得所求轨迹方程为: (椭圆内部分)(3)将代入得所求轨迹方程为: (椭圆内部分)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例4 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上利用上述条件建立的不等式即可求得的取值范围解:(法1)设椭圆上,两点关于直线对称,直线与交于点的斜率,设直线的方程为由方程组消去得。于是,即点的坐标为点在直线上,解得将式代入式得,是椭圆上的两点,解得(法2)同解法1得出,即点坐标为,为椭圆上的两点,点在椭圆的内部,解得(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为,在椭圆上,两式相减得,即又直线,即。又点在直线上,。由,得点的坐标为以下同解法2.说明:涉及椭圆上两点,关于直线恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(