1、在SPSS中,有Oneway ANOVA(单变量单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。本节仅练习最为常用的单变量方差分析。三、实验演示内容与步骤 单变量单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。并可以进行两两组间均值的比较,称作组间均值的多重比较。主要采用One-way ANOVA过程。采用One-way ANOVA过程要求:因变量属于正态分布总体,若因
2、变量的分布明显是非正态,应该用非参数分析过程。若对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。【例6.1】欲比较四种饲料对仔猪增重效果的优劣,随机选取了性别、年龄、体重相同,无亲缘关系的20头猪,随机分为4组,每组5头,分别饲喂一种饲料所得增重数据如下在。试利用这些数据对4种饲料对仔猪增重效果的差异进行检验。饲料日增重(g)均值A573754426050B133941331929C152018D24382223合计600= =30打开数据文件“单因素方差分析数据-
3、1.xls”。在SPSS中实验该检验的步骤如下: 步骤1:选择菜单【分析】【比较均值】【单因素方差分析】,依次将观测变量销量移入因变量列表框,将因素变量地区移入因子列表框。图 5.1 One-Way ANOVA 对话框 单击两两比较按钮,如图5.2,该对话框用于进行多重比较检验,即各因素水平下观测变量均值的两两比较。方差分析的原假设是各个因素水平下的观测变量均值都相等,备择假设是各均值不完全相等。假如一次方差分析的结果是拒绝原假设,我们只能判断各观测变量均值不完全相等,却不能得出各均值完全不相等的结论。各因素水平下观测变量均值的更为细致的比较就需要用多重比较检验。图 5.2 两两比较对话框假定
4、方差齐性选项栏中给出了在观测变量满足不同因素水平下的方差齐性条件下的多种检验方法。 LSD。使用 t 检验执行组均值之间的所有成对比较。对多个比较的误差率不做调整。 Bonferroni。使用 t 检验在组均值之间执行成对比较,但通过将每次检验的错误率设置为实验性质的错误率除以检验总数来控制总体误差率。这样,根据进行多个比较的实情对观察的显著性水平进行调整。 Sidak。基于 t 统计量的成对多重比较检验。Sidak 调整多重比较的显著性水平,并提供比 Bonferroni 更严密的边界。 Scheffe。为均值的所有可能的成对组合执行并发的联合成对比较。使用 F 取样分布。可用来检查组均值的
5、所有可能的线性组合,而非仅限于成对组合。 R-E-G-W F。基于 F 检验的 Ryan-Einot-Gabriel-Welsch 多步进过程。 R-E-G-W Q。基于学生化范围的 Ryan-Einot-Gabriel-Welsch 多步进过程。 S-N-K使用学生化的范围分布在均值之间进行所有成对比较。它还使用步进式过程比较具有相同样本大小的同类子集内的均值对。均值按从高到低排序,首先检验极端差分。 Tukey。使用学生化的范围统计量进行组间所有成对比较。将试验误差率设置为所有成对比较的集合的误差率。 Tukeys b。使用学生化的范围分布在组之间进行成对比较。临界值是 Tukeys 真实
6、显著性差异检验的对应值与 Student-Newman-Keuls 的平均数。 Duncan。使用与 Student-Newman-Keuls 检验所使用的完全一样的逐步顺序成对比较,但要为检验的集合的错误率设置保护水平,而不是为单个检验的错误率设置保护水平。使用学生化的范围统计量。 Hochbergs GT2。使用学生化最大模数的多重比较和范围检验。与 Tukeys 真实显著性差异检验相似。 Gabriel。使用学生化最大模数的成对比较检验,并且当单元格大小不相等时,它通常比 Hochbergs GT2 更为强大。当单元大小变化过大时,Gabriel 检验可能会变得随意。 Waller-Du
7、ncan。基于 t 统计的多比较检验;使用 Bayesian 方法。 Dunnett。将一组处理与单个控制均值进行比较的成对多重比较 t 检验。 最后一类是缺省的控制类别。另外,您还可以选择第一个类别。双面检验任何水平(除了控制类别外)的因子的均值是否不等于控制类别的均值。控制检验任何水平的因子的均值是否大于控制类别的均值。这里选择最常用的LSD检验法、S-N-K检验法、Duncan检验法。未假定方差齐性选项栏中给出了在观测变量不满足方差齐性条件下的多种检验方法。 Tamhanes T2。基于 t 检验的保守成对比较。当方差不相等时,适合使用此检验。 Dunnetts T3。基于学生化最大值模
8、数的成对比较检验。 Games-Howell。有时会变得随意的成对比较检验。s C。基于学生化范围的成对比较检验。这里选择Tamhanes T2检验法、Dunnetts T3检验法。Significance level输入框中用于输入多重比较检验的显示性水平,默认为5。 单击【选项】按钮,弹出options子对话框,如图所示。在对话框中选中描述性复选框,输出不同因素水平下观测变量的描述统计量;选择方差同质性检验复选框,输出方差齐性检验结果;选中均值图复选框,输出不同因素水平下观测变量的均值直线图。图 5.3 “选项”子对话框 统计量。 描述性。 计算每组中每个因变量的个案数、均值、标准差、均值
9、的标准误、最小值、最大值和 95% 置信区间。 固定和随机效果。 显示固定效应模型的标准差、标准误和 95% 置信区间,以及随机效应模型的标准误、95% 置信区间和成分间方差估计。 方差同质性检验。 计算 Levene 统计量以检验组方差是否相等。该检验独立于正态的假设。 Brown-Forsythe。计算 Brown-Forsythe 统计量以检验组均值是否相等。当方差相等的假设不成立时,这种统计量优于 F 统计量。 Welch。计算 Welch 统计量以检验组均值是否相等。 均值图。显示一个绘制子组均值的图表(每组的均值由因子变量的值定义)。 缺失值。控制对缺失值的处理。 按分析顺序排除个
10、案。给定分析中的因变量或因子变量有缺失值的个案不用于该分析。而且,也不使用超出为因子变量指定的范围的个案。 按列表排除个案。因子变量有缺失值的个案,或包括在主对话框中的因变量列表上的任何因变量的值缺失的个案都排除在所有分析之外。如果尚未指定多个因变量,那么这个选项不起作用。 在主对话框(单因素方差分析对话框)中点击ok按钮,可以得到单因素分析的结果。实验结果分析:表5.1 资料描述性统计表DescriptivesNMeanStd. DeviationStd. Error95% Confidence Interval for MeanMinimumMaximumLower BoundUpper
11、Bound1550.009.9754.46137.6162.39229.0012.4105.55013.5944.41318.006.7823.0339.5826.42423.009.3814.19511.3534.65Total30.0015.4243.44922.7837.22表5.2 方差齐性检验表Test of Homogeneity of VariancesLevene Statisticdf1df2Sig.1.32216.302表5.3 单因素方差分析结果ANOVASum of SquaresdfMean SquareFBetween Groups2970.000990.00010.219.001Within Groups1550.00096.8754520.000表5.4 多重比较检验结果-LSD法、Tamhane法、Dunnett T3法Multiple ComparisonsDependent Variable:(I) 饲料(J) 饲料Mean Difference (I-J)95% Confidence IntervalLSD21.000*6.225.0047.8034.2032.000*.