信号的采集和恢复.docx
- 文档编号:9883941
- 上传时间:2023-02-07
- 格式:DOCX
- 页数:21
- 大小:1,003.37KB
信号的采集和恢复.docx
《信号的采集和恢复.docx》由会员分享,可在线阅读,更多相关《信号的采集和恢复.docx(21页珍藏版)》请在冰豆网上搜索。
信号的采集和恢复
实验报告
课程名称:
信号分析与处理指导老师:
杨欢老师成绩:
__________________
实验名称:
信号的采集与恢复实验类型:
基础实验同组学生姓名:
第一次实验信号的采集与恢复
装订线
一、实验目的
1.1了解信号的采样方法与过程以及信号恢复的方法;
1.2验证采样定理。
二、实验原理
2.1信号采集与时域采样定理
对一个连续时域信号的采集,理论上是用一系列冲激函数与信号做乘积,实际中常用占空比尽可能小的周期矩形脉冲作为开关函数来代替冲激函数。
采样信号的频谱,是由原来信号的频谱进行幅值尺度变换并在频率轴(横轴)上做平移延拓组成的,频率轴上平移延拓的“周期”为开关函数的频率值。
具体推导如下:
其中,
是采样信号
的频谱。
为开关函数s(t)的傅里叶级数的傅里叶系数,
为连续信号的频谱。
若理想开关函数可表示为周期为Ts的冲激函数序列
于是
一个典型的例子:
矩形脉冲采样信号s(t),作为理想冲激串的替代。
假设脉冲宽度τ,则s(t)的傅里叶变换
,于是
平移后的频率幅度按Sa(x)规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
显然,对于开关函数,若它的频率为fs,信号的最大频率为fm,那么为了采样后采样信号的频谱不发生混叠,存在时域采样定理:
fs≥fm(时域采样定理,即香农定理)。
而对于频谱不受限的信号,往往需要先用低通滤波器滤除高频分量,使它近似成为频谱受限的信号,在进行采样。
如果不这么做,就会发生频谱混叠,影响到信号恢复的质量。
2.2信号恢复
在不发生频谱混叠的时候,可以采用“频谱加窗”的方式恢复信号。
即在采样信号的频谱中提取出原来信号的频谱,通过傅里叶逆变换即可得到原来的信号。
对于频谱不受限的信号,由于它是经过低通滤波再进行采样的,因此有采样信号恢复的“原来的信号”并不完全与原来的信号一致。
不过,在原来的信号高频分量不太大或者没有意义(例如音响声波中超过人耳听觉频域的分量)时,这样的恢复方法近似可以看作完全恢复。
如果发生了频谱混叠,则用频域加窗的方法完全无从采样信号的频谱提取出原来信号的频谱,这样恢复出的信号将严重失真。
实验中选用f<2fmax、f=2fmax、f>2fmax3种采样频率对连续信号进行采样,以验证采样定理。
三、实验中的线路——模拟低通滤波器的电路设计
根据截止频率公式
,设计了如下的两个低通滤波器:
图3.1截止频率1kHz的低通滤波器,经PSpice仿真可知,当增益为-3dB,频率为1kHz
图3.2截止频率2kHz的低通滤波器,经PSpice仿真可知,当增益为-3dB,频率为2kHz
说明:
其实波特图应该以频率的常用对数为横轴。
但为了显示出1kHz、2kHz的数值,采用均匀的横轴刻度。
4、实验设备
4.1PC一台;
4.2NImyDAQ便携式数据采集设备1套;
4.3面包板一块,电阻,电容,导线若干。
五、实验内容与实验步骤
(1)观察并观察采样信号的波形
1、在WaveformEditor中保持myDAQ的SampleRate(采样率)为200kHz,Duration(持续时间)为10ms,设置原始连续信号为正弦波,频率为500Hz,开关函数为单极性举行脉冲信号,频率为10kHz,占空比设为50%,两个信号幅度都为默认值1V,将两信号相乘得到采样信号。
2、返回ArbitraryWaveformGenerator界面,设置UpdateRate(更新率)为200kS/s,选择OutputChannel(输出通道)为AO0,并在相应处单击SelectWaveformFiletoLoad图6.标,装载刚才的.wdt格式文件,单击Run按钮。
3、将myDAQ的AO0输出接至AI0输入端,在NIELVISmxInstrumentLauncher界面中单击Scope图6.标进入示波器功能,读取波形。
也可将myDAQ的AO0输出至真实示波器显示。
4、保持原始连续信号不变,开关函数频率分别设置为400Hz、1kHz、2kHz、5kHz,重复以上过程。
(2)设计模拟低通滤波器
滤波器电路如上面所示,旁边是它的仿真。
(3)信号的恢复
将采样信号通过模拟低通滤波器,比较连续信号、采样信号以及低通滤波器输出信号。
1、将原始连续信号设定为频率500Hz,幅度为1V的三角波,重复以上过程。
2、将举行脉冲开关函数的占空比调为10%,模拟冲激脉冲抽样,重复以上过程。
6、实验记录
图6.1:
截止频率1kHz;500Hz正弦波;开关函数400Hz,占空比50%图6.2:
截止频率1kHz;500Hz正弦波;开关函数1kHz,占空比50%
图6.3:
截止频率1kHz;500Hz正弦波;开关函数2kHz,占空比50%图6.4:
截止频率1kHz;500Hz正弦波;开关函数5kHz,占空比50%
图6.5:
截止频率1kHz;500Hz正弦波;开关函数10kHz,占空比50%图6.6:
截止频率1kHz;500Hz三角波;开关函数400Hz,占空比50%
图6.7:
截止频率1kHz;500Hz三角波;开关函数1kHz,占空比50%图6.8:
截止频率1kHz;500Hz三角波;开关函数2kHz,占空比50%
图6.9:
截止频率1kHz;500Hz三角波;开关函数5kHz,占空比50%图6.10:
截止频率1kHz;500Hz三角波;开关函数10kHz,占空比50%
图6.11:
截止频率1kHz;500Hz正弦波;开关函数400Hz,占空比10%图6.12:
截止频率1kHz;500Hz正弦波;开关函数1kHz,占空比10%
图6.13:
截止频率1kHz;500Hz正弦波;开关函数2kHz,占空比10%图6.14:
截止频率1kHz;500Hz正弦波;开关函数5kHz,占空比10%
图6.15:
截止频率1kHz;500Hz正弦波;开关函数10kHz,占空比10%
图6.16:
截止频率2kHz;500Hz正弦波;开关函数400Hz,占空比50%图6.17:
截止频率2kHz;500Hz正弦波;开关函数1kHz,占空比50%
图6.18:
截止频率2kHz;500Hz正弦波;开关函数2kHz,占空比50%图6.19:
截止频率2kHz;500Hz正弦波;开关函数5kHz,占空比50%
图6.20:
截止频率2kHz;500Hz正弦波;开关函数10kHz,占空比50%图6.21:
截止频率2kHz;500Hz三角波;开关函数400Hz,占空比50%
图6.22:
截止频率2kHz;500Hz三角波;开关函数1kHz,占空比50%图6.23:
截止频率2kHz;500Hz三角波;开关函数2kHz,占空比50%
图6.24:
截止频率2kHz;500Hz三角波;开关函数5kHz,占空比50%图6.25:
截止频率2kHz;500Hz三角波;开关函数10kHz,占空比50%
图6.26:
截止频率2kHz;500Hz正弦波;开关函数400Hz,占空比10%图6.27:
截止频率2kHz;500Hz正弦波;开关函数1kHz,占空比10%
图6.28:
截止频率2kHz;500Hz正弦波;开关函数2kHz,占空比10%图6.29:
截止频率2kHz;500Hz正弦波;开关函数5kHz,占空比10%
图6.30:
截止频率2kHz;500Hz正弦波;开关函数10kHz,占空比10%
为了查阅,将各图参数汇总如下:
表1恢复信号波形查阅表
低通滤波截止频率1kHz
低通滤波截止频率2kHz
图号
500Hz正弦波
500Hz三角波
500Hz正弦波
500Hz三角波
占空比50%
占空比10%
占空比50%
占空比50%
占空比10%
占空比50%
400Hz采样
6.1
6.11
6.6
6.16
6.26
6.21
1kHz采样
6.2
6.12
6.7
6.17
6.27
6.22
2kHz采样
6.3
6.13
6.8
6.18
6.28
6.23
5kHz采样
6.4
6.14
6.9
6.19
6.29
6.24
10kHz采样
6.5
6.15
6.10
6.20
6.30
6.25
七、实验分析
7.1总结离散信号频谱的特点
答:
离散信号的频谱具有以下特点:
离散信号频谱是具有周期性的;
在原始信号具有周期性时,频谱是离散的;而在原始信号不具有周期性时,频谱是连续的。
7.2比较在不同采样频率情况下原始连续信号与抽样信号波形
答:
我们可以对上面表1中竖列内对应的波形作比较,得到的结论如下:
当采样频率为400Hz,抽样信号波形失真明显,完全体现不出原信号波形的特征,原因是采样频率明显低于奈奎斯特频率(对于500Hz正弦波,奈奎斯特频率应为1kHz;而对于频谱不受限的三角波,可以认为奈奎斯特频率是滤波器截止频率的2倍),采样信号的频谱发生了严重的混叠,使得“恢复”出的时域信号与原信号相比显著失真;
接着,当采样频率依次为1kHz,2kHz,5kHz和10kHz,随着采样频率的提高,抽样信号波形失真程度逐渐减小,也就是说抽样信号与原始信号相比越来越一致(不过,并不是完全一致,详见7.3、7.4相关论述)。
7.3比较原始连续信号分别为正弦波和三角波时,其抽样信号的频谱特点
答:
我们可以对上面表1中正弦波、三角波对应波形的失真情况作比较,得到的结论如下:
在同一滤波器截止频率、同一采样频率、同一占空比的情况下,三角波的频谱混叠比正弦波更加明显。
分析原因是:
三角波频谱原本不受限,滤波之后可以认为它的最大频率为滤波器截止频率。
因此它的奈奎斯特频率就是滤波器截止频率的两倍——分别为2kHz和4kHz,都要高于正弦波的奈奎斯特频率1kHz。
因此,在采样频率400Hz时,采样频率都低于两种信号的奈奎斯特频率,但低于三角波(滤波后)奈奎斯特频率的幅度,要比低于正弦波奈奎斯特频率更明显,因此三角波抽样信号频谱混叠更严重,失真更明显;
在采样频率1kHz时,采样频率基本等于正弦波的奈奎斯特频率,但仍然低于三角波(滤波后)的奈奎斯特频率,因此在正弦波抽样信号不发生频谱混叠的同时,三角波抽样信号仍存在有明显的频谱混叠;
在采样频率5kHz和10kHz时,采样频率大于两种信号的的奈奎斯特频率,因此理论上都不发生频谱混叠,信号都不失真,但由于实际实验中,三角波的高频分量未被完全滤去,因此实际上三角波抽样信号仍然存在一定的频谱混叠,继而导致一定失真。
而正弦波抽样信号频谱基本上是一根根分立谱线,频谱不混叠,因此保真度要比三角波好得多。
7.4比较矩形脉冲开关函数占空比分别为50%和10%时,抽样信号的频谱特点
答:
我们可以对上面表1中开关函数占空比50%、10%对应波形作比较,得到的结论如下:
由占空比50%的开关函数采样得到的抽样信号,比由占空比10%的开关函数相比,频谱混叠更加严重,时域波形失真更明显。
分析原因是:
理想情况下开关函数应该为强度为1冲激串,这样在采样频率大于原始信号奈奎斯特频率时,抽样信号频谱表达式为
,频谱不混叠,时域信号不失真。
而实际中我们使用占空比为τ/Ts的矩形脉冲来代替理想冲激串。
这样,抽样信号的频谱表达式为
,由于
是在频率轴上向两侧无线延伸的,因此抽样信号会发生频谱混叠。
而且,有表达式可知,占空比大会使得
衰减较慢,从而频谱混叠的现象更加严重。
八、体会
关于波形的相关原因分析,请见上文第七部分。
实验中遇到的问题:
问题一:
对实验软件不熟悉,这花了我们较长的时间。
当然,解决方法就是按照教材知道一步步熟悉软件使用,体会从波形编辑、输出到波形观察的流程;
问题二:
刚开始我们观察到的信号恢复后的波形,似乎被叠加上一个周期较长的正弦波。
后来得知,这是由于myDAQ的接地导线接触不良,导致引入了市电的工频信号。
解决方法是,检查接线,使接地导线接触良好;
问题三:
导线总是不能和myDAQ紧密结合,总是滑脱出来。
后来我们终于明白了老师发螺丝刀的用意——用螺丝刀来拧紧插孔中的咬合构件。
解决方法很简单,就是用螺丝刀拧紧。
究其原因,还是对设备不熟悉。
其实,对于螺丝刀的这种使用,我们并不陌生——在《电工电子工程训练》中,配电柜内的导线都是用这种方法拧紧的。
顺便还可以给老师反馈信息——有些螺丝刀的头太大了,插不进孔槽,实验室可以多配些小头的螺丝刀;
问题四:
滤波器中元件的引脚靠得太近,导致波形有些不稳定。
我们猜测可能的原因有两个:
第一,引脚靠得太近,在我们触碰的过程中可能偶然发生短路,改变了滤波器的性质,当然会影响输出信号的波形;第二,引脚靠得太近,会使得在这样的信号频率下,引脚间的附加电抗不可忽略——尤其是对于具有高频分量的三角波,这种附加电抗引起的效应可能更加明显。
解决方法就是,调整接线,使各元件引脚之间的距离合理。
关于本实验的其他体会:
首先,我们认识到对设备的熟悉是十分重要的,熟悉了设备可以节省较多时间;
其次,在设计实验与分析实验时,要密切注意实际情况与理想情况间的差别。
对于实际实验中发生的一些异常状况,我们往往可以从实际情况与理想情况间的差别入手,分析这样的差别对结果有何影响,从而能够较快地找出原因。
例如,矩形脉冲与理想冲激串之间的差别,也是导致抽样信号产生的频谱混叠的一个原因。
我们应该使开关函数尽量接近理想冲激串——例如减小占空比;
再次,由于实际中的很多信号都是频谱不受限的(如三角波,和电网中具有高次谐波的实际电压),为了避免频谱混叠,我们需要使用低通滤波器尽量滤除高频分量,因此,经采样恢复出来的信号波形往往会有一定的失真;
还有,对于低通滤波器的设计,往往要求它的过渡带尽量窄,从而使通带之外的频率分量能够迅速衰减,尽量接近一个理想滤波器;
最后,我总结了一下要想尽量保真地对原始信号进行采样,应该怎么做:
(1)使用的开关函数要尽量接近理想冲激串;
(2)采样频率要高于原始信号的奈奎斯特频率。
对于频谱不受限的信号,为了避免频谱混叠,应该使用低通滤波器进行滤波;
(3)滤波器要尽量接近理想滤波器。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 采集 恢复