人工神经网络的模型.docx
- 文档编号:9781454
- 上传时间:2023-02-06
- 格式:DOCX
- 页数:11
- 大小:670.11KB
人工神经网络的模型.docx
《人工神经网络的模型.docx》由会员分享,可在线阅读,更多相关《人工神经网络的模型.docx(11页珍藏版)》请在冰豆网上搜索。
人工神经网络的模型
人工神经网络得模型:
人工神经元得模型、常用得激活转移函数、MP模型神经元
人工神经元得主要结构单元就是信号得输入、综合处理与输出
人工神经元之间通过互相联接形成网络,称为人工神经网络
神经元之间相互联接得方式称为联接模式。
相互之间得联接强度由联接权值体现。
在人工神经网络中,改变信息处理及能力得过程,就就是修改网络权值得过程。
人工神经网络得构造大体上都采用如下得一些原则:
由一定数量得基本神经元分层联接;
每个神经元得输入、输出信号以及综合处理内容都比较简单;
网络得学习与知识存储体现在各神经元之间得联接强度上。
神经网络解决问题得能力与功效除了与网络结构有关外,在很大程度上取决于网络激活函数。
人工神经网络就是对人类神经系统得一种模拟。
尽管人类神经系统规模宏大、结构复杂、功能神奇,但其最基本得处理单元却只有神经元。
人工神经系统得功能实际上就是通过大量神经元得广泛互连,以规模宏伟得并行运算来实现得。
人工神经网络模型至少有几十种,其分类方法也有多种。
例如,若按网络拓扑结构,可分为无反馈网络与有反馈网络;若按网络得学习方法,可分为有教师得学习网络与无教师得学习网络;若按网络得性能,可分为连续型网络与离散型网络,或分为确定性网络与随机型网络;若按突触连接得性质,可分为一阶线性关联网络与高阶非线性关联网络。
人工神经网络得局限性:
(1)受到脑科学研究得限制:
由于生理实验得困难性,因此目前人类对思维与记忆机制得认识还很肤浅,还有很多问题需要解决;
(2)还没有完整成熟得理论体系;
(3)还带有浓厚得策略与经验色彩;
(4)与传统技术得接口不成熟。
如果将大量功能简单得形式神经元通过一定得拓扑结构组织起来,构成群体并行分布式处理得计算结构,那么这种结构就就是人工神经网络,在不引起混淆得情况下,统称为神经网络。
根据神经元之间连接得拓扑结构上得不同,可将神经网络结构分为两大类:
分层网络相互连接型网络
分层网络可以细分为三种互连形式:
简单得前向网络;
具有反馈得前向网络;
层内有相互连接得前向网络。
神经网络得学习分为三种类型:
有导师学习、强化学习无导师学习
有导师学习:
必须预先知道学习得期望结果——教师信息,并依此按照某一学习规则来修
正权值。
强化学习:
利用某一表示“奖/惩”得全局信号,衡量与强化输入相关得局部决策如何。
无导师学习:
不需要教师信息或强化信号,只要给定输入信息,网络通过自组织调整,自学习并给出一定意义下得输出响应。
神经网络结构变化得角度,学习技术还可分为三种:
权值修正、拓扑变化、权值与拓扑修正
学习技术又还可分为:
确定性学习、随机性学习
人工神经网络
人工神经网络就是生物神经网络得某种模型(数学模型);就是对生物神经网络得模仿
基本处理单元为人工神经元
生物神经元(neuron)就是基本得信息处理单元
前馈(forward)神经网络
各神经元接受来自前级得输入,并产生输出到下一级,无反馈,可用一有向无环图表示。
网络中得节点分两类:
输入节点;计算节点(神经元节点)
节点按层(layer)组织:
第i层得输入只与第i-1层得输出相连。
输入信号由输入层输入,由第一层节点输出,传向下层,……
前馈:
信息由低层向高层单向流动。
可见层
输入层(inputlayer)输入节点所在层,无计算能力
输出层(outputlayer)节点为神经元隐含层(hiddenlayer)中间层,节点为神经元
BP神经网络训练得两个阶段
(1)信号正向传递过程
输入信息从输入层经隐层逐层、正向传递,直至得到各计算单元得输出
(2)误差反向传播过程
输出层误差从输出层开始,逐层、反向传播,可间接计算隐层各单元得误差,并用此误差修正前层得权值、
BP网络得优点
①特别适合于求解内部机制复杂得问题
BP网络实质上实现了一个从输入到输出得映射功能,而数学理论已证明它具有实现任何复杂非线性映射得功能
②具有自学习能力
网络能通过学习带正确答案得实例集自动提取“合理得”求解规则
③网络具有一定得推广、概括能力。
BP网络得问题,如:
①BP算法得学习速度较慢
②网络训练失败得可能性较大
③网络结构得选择尚无一种统一而完整得理论指导,一般只能由经验选定。
④网络得预测能力(泛化能力、推广能力)与训练能力(逼近能力、学习能力)得矛盾
回归估计
例:
基于BP神经网络得公路运量(客运量、货运量)预测
公路运量与该地区人数、机动车数量、公路面积有关。
已知某地区20年得公路运量有关数据,对于未来某两年,若明确该地区人数、机动车数量、公路面积,要求:
预测该地区得公路运量。
分析:
(1)明确模型输入输出关系
(2)建模:
原始数据读取;数据标准化处理;网络训练;
(3)模型评价:
对原始数据仿真,明确预测误差
(4)输出预测结果:
对新数据预测结果
牛顿法及其收敛性
牛顿法就是一种线性化方法,其基本思想就是将非线性方程
逐步归结为某种线性方程来求解、
设已知方程
有近似根
(假定
),
将函数
在点
展开,有
于就是方程
可近似地表示为
这就是个线性方程,记其根为
则
得计算公式为
交叉演化算法代码实现
%F0就是变异率%Gm最大迭代次数
Gm=10000;
F0=0、5;
Np=100;
CR=0、9;%交叉概率
G=1;%初始化代数
D=10;%所求问题得维数
Gmin=zeros(1,Gm);%各代得最优值
best_x=zeros(Gm,D);%各代得最优解
value=zeros(1,Np);
%产生初始种群
xmin=-5、12;
xmax=5、12;
functiony=f(v)
%Rastrigr函数
y=sum(v、^2-10、*cos(2、*pi、*v)+10);
X0=(xmax-xmin)*rand(Np,D)+xmin;%产生Np个D维向量
XG=X0;
XG_next_1=zeros(Np,D);%初始化
XG_next_2=zeros(Np,D);
XG_next=zeros(Np,D);
whileG<=Gm
%变异操作
fori=1:
Np
%产生j,k,p三个不同得数
a=1;
b=Np;
dx=randperm(b-a+1)+a-1;
j=dx
(1);
k=dx
(2);
p=dx(3);
%要保证与i不同
ifj==i
j=dx(4);
elseifk==i
k=dx(4);
elseifp==i
p=dx(4);
end
end
end
%变异算子
suanzi=exp(1-Gm/(Gm+1-G));
F=F0*2、^suanzi;
%变异得个体来自三个随机父代
son=XG(p,:
)+F*(XG(j,:
)-XG(k,:
));
forj=1:
D
ifson(1,j)>xmin&son(1,j) XG_next_1(i,j)=son(1,j); else XG_next_1(i,j)=(xmax-xmin)*rand (1)+xmin; end end end %-交叉操作 fori=1: Np randx=randperm(D);%[1,2,3,、、、D]得随机序列 forj=1: D ifrand>CR&randx (1)~=j%CR=0、9 XG_next_2(i,j)=XG(i,j); else XG_next_2(i,j)=XG_next_1(i,j); end end end %-选择操作 fori=1: Np iff(XG_next_2(i,: )) )) XG_next(i,: )=XG_next_2(i,: ); else XG_next(i,: )=XG(i,: ); end end %找出最小值 fori=1: Np value(i)=f(XG_next(i,: )); end [value_min,pos_min]=min(value); %第G代中得目标函数得最小值 Gmin(G)=value_min; %保存最优得个体 best_x(G,: )=XG_next(pos_min,: ); XG=XG_next; trace(G,1)=G; trace(G,2)=value_min; G=G+1; end
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工 神经网络 模型