整理zc8型接地电阻测量仪使用方法.docx
- 文档编号:9680994
- 上传时间:2023-02-05
- 格式:DOCX
- 页数:24
- 大小:766.18KB
整理zc8型接地电阻测量仪使用方法.docx
《整理zc8型接地电阻测量仪使用方法.docx》由会员分享,可在线阅读,更多相关《整理zc8型接地电阻测量仪使用方法.docx(24页珍藏版)》请在冰豆网上搜索。
整理zc8型接地电阻测量仪使用方法
一、接地电阻检测仪
(本指导书主要介绍ZC-8型接地摇表)
一、定义
接地电阻测量仪也称接地摇表,主要用语直接测量各种接地装置的接地电阻值。
目前,我局的ZC-8型接地摇表有两种,一种为三个端钮;另一种为四个端钮。
二、结构
ZC-8型接地电阻测量仪主要是由手摇发电机、相敏整流放大器、电位器、电流互感器及检流计等构成,全部密封在铝合金铸造的外壳内。
仪表都附带有两根探针,一根是电位探针,另一根是电流探针。
(三端钮的接地摇表)(四端钮的接地摇表)
三、仪表量程
ZC-8型接地摇表有两种量程,一种是0-1-10-100Ω;另一种是0-10-100-1000Ω。
我局现有的接地摇表中,三个端钮的量程为0-10-100-1000Ω;四个端钮的量程为0-1-10-100Ω。
四、正确读数
ZC-8型接地摇表的数字盘上显示为1、2、3…10共10个大格,每个大格中有10个小格。
三端钮的接地摇表倍数盘内有1、10、100三种倍数;四端钮的接地摇表倍数盘内有0.1、1、10三种倍数。
在规定转速内,仪表指针稳定时指针所指的数乘以所选择的倍数即是测量结果。
如:
当指针指在8.8,而选择的倍数为10时,测量出来的电阻值为8.8×10=88Ω
(三端钮摇表最大倍率)(四端钮摇表最大倍率)
五、对接地探针的要求
用接地摇表测量接地电阻,关键是探针本身的接地电阻,如果探针本身接地电阻较大,会直接影响仪器的灵敏度,甚至测不出来。
一般电流探针本身的接地电阻不应大于250Ω,电位探测针本身的接地电阻不应大于1000Ω,这些数值对大多数种类的土质是容易达到的。
如在高土壤电阻率地区进行测量,可将探针周围的土壤用盐水浇湿,探针本身的电阻就会大大降低。
探针一般采用直径为0.5cm,长度为0.5m的镀锌铁棒制作而成。
六、仪表好坏检查
1、外观检查。
先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。
2、开路检查。
三个端钮的接地摇表:
将仪表电流端钮(C)和电位端钮(P)短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向;四端钮的接地摇表:
将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。
(开路检查)
3、短路检查。
不管是三端钮的仪表还是四端钮的仪表,均将所有端钮连接起来,然后轻摇摇表,摇表的指针偏往“0”的方向。
通过上述三个步骤的检查后,基本上可以确定仪表是完好的。
(短路试验)
七、测量操作方法
1、接地摇表必须水平放置于平稳牢固的地方,以免在摇动时因抖动和倾斜产生测量误差。
2、三极法测量杆塔工频接地电阻的电极布置图
L
电压极P辅助线长度:
2.5L(米)
电流极C辅助线长度:
4L(米)
3、接线必须正确无误
(图1三端钮接地摇表接线图)(四端钮接地摇表)
三极法测量杆塔工频接地电阻接线图
3、将表调至最大量程后,均匀摇动手柄,视被测物电阻的大小调整量程至接近被测物的电阻。
一般规定转速为120转/分钟,待指针稳定下来再读数。
八、测量技术措施及安全注意事项
1、解开和恢复接地引下线时均应戴绝缘手套。
2、按照接地装置规程要求,将两盘线展开并顺线路垂直方向拉,其中电流极为接地装置边线与射线之和的4倍,电压极为接地装置边线与射线之和的2.5倍,并注意两根线之间的距离不应小于1m。
两根探针打入地的深度不得小于0.5m,并且拉线与探针必须连接可靠,接触良好。
3、必须确认负责拉线和打探针的人员不碰触探针或其他裸露部分的情况下才可以摇动接地摇表。
4、摇测时,应从最大量程进行,根据被测物电阻的大小逐步调整量程。
摇表的转速应保持在120转/分钟(注:
这个数不是绝对的,须根据表本身来定。
目前我局新的一批表中,有要求150转/分钟的。
)
5、若摇测时遇到较大的干扰,指针摆动幅度很大,无法读数,应先检查各连接点是否接触良好,然后再重测。
如还是一样,可将摇速先增大后降低(不能低于规定值),直至指针比较稳定时读数,若指针仍有较小摆动,可取平均值。
6、接地电阻应在气候相对干燥的季节进行,避免雨后立即测量,以免测量结果不真实。
7、测量应遵守现场安全规定。
雷云在杆塔上方活动时应停止测量,并撤离测量现场。
8、测量完毕,应对设备充分放电,否则容易引起触电事故。
九、接地装置运行规定
1、架空电力线路接地装置有关数据
刚性铁塔接地装置材料表
形式
土壤电阻率(Ω/m)
型式尺寸(m)
材料表
埋深
(m)
最大允许工频电阻(Ω)
L1
L2
名称
规格
总长(m)
T1
<100
0
0
圆钢
¢10
60
0.8
10
T2
500
18
0
圆钢
¢10
132
0.6
15
T3
1000
33
0
圆钢
¢10
192
0.5
20
T4
2000
62
0
圆钢
¢10
308
0.5
25
T5
5000
62
62
圆钢
¢10
556
0.5
15mL110mL1
L2L2
刚性铁塔接地装置图拉线铁塔接地装置图
拉线铁塔接地装置材料表
形式
土壤电阻率(Ω/m)
型式尺寸(m)
材料表
埋深
(m)
最大允许工频电阻(Ω)
L1
L2
名称
规格
总长(m)
T1
<100
0
0
圆钢
¢10
40
0.8
10
T2
500
18
0
圆钢
¢10
112
0.6
15
T3
1000
33
0
圆钢
¢10
172
0.5
20
T4
2000
62
0
圆钢
¢10
288
0.5
25
T5
5000
62
62
圆钢
¢10
536556
0.5
十、季节系数的选择
工频接地电阻测量后按《交流电气装置的接地》(DL/T621-1997)中的有关规定进行季节系数的折算,埋深0.5米时的季节系数取1.4-1.8,埋深0.8-1.0米时,季节系数取1.25-1.45,测量时土壤比较干燥,则采用较小值;如土壤较潮湿,则采用较大值。
二、接地电阻测试仪使用方法
一.使用接地电阻测试仪准备工作
1)熟读接地电阻测量仪的使用说明书,应全面了解仪器的结构、性能及使用方法。
2)备齐测量时所必须的工具及全部仪器附件,并将仪器和接地探针擦拭干净,特别是接地探针,一定要将其表面影响导电能力的污垢及锈渍清理干净。
3)将接地干线与接地体的连接点或接地干线上所有接地支线的连接点断开,使接地体脱离任何连接关系成为独立体。
二.使用接地电阻测试仪测量步骤
1)将两个接地探针沿接地体辐射方向分别插入距接地体20m、40m的地下,插人深度为400mm,如下图所示。
接地电阻测试使用图解:
a)实际操作b)等效原理
2)将接地电阻测量仪平放于接地体附近,并进行接线,接线方法如下:
①用最短的专用导线将接地体与接地测量仪的接线端“E1”(三端钮的测量仪)或与C2、P2”短接后的公共端(四端钮的测量仪)相连。
②用最长的专用导线将距接地体40m的测量探针(电流探针)与测量仪的接线钮“C1”相连。
③用余下的长度居中的专用导线将距接地体⒛m的测量探针(电位探针)与测量仪的接线端“P1”相连。
3)将测量仪水平放置后,检查检流计的指针是否指向中心线,否则调节“零位调整器”使测量仪指针指向中心线。
4)将“倍率标度”(或称粗调旋钮)置于最大倍数,并慢慢地转动发电机转柄(指针开始偏移),同时旋动“测量标度盘”(或称细调旋钮)使检流计指针指向中心线。
5)当检流计的指针接近于平衡时(指针近于中心线)加快摇动转柄,使其转速达到120r/min以上,同时调整“测量标度盘”,使指针指向中心线。
6)若“测量标度盘”的读数过小(小于1)不易读准确时,说明倍率标度倍数过大。
此时应将“倍率标度”置于较小的倍数,重新调整“测量标度盘”使指针指向中心线上并读出准确读数。
7)计算测量结果,即R地=“倍率标度”渎数ד测量标度盘”读数。
聚乙烯(PE)简介
1.1聚乙烯
化学名称:
聚乙烯
英文名称:
polyethylene,简称PE
结构式:
聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。
聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。
1.1.1聚乙烯的性能
1.一般性能
聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。
工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。
PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。
聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。
2.力学性能
PE是典型的软而韧的聚合物。
除冲击强度较高外,其他力学性能绝对值在塑料材料中都是较低的。
PE密度增大,除韧性以外的力学性能都有所提高。
LDPE由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。
HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。
相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。
几种PE的力学性能见表1-1。
表1-1几种PE力学性能数据
性能
LDPE
LLDPE
HDPE
超高相对分子质量聚乙烯
邵氏硬度(D)
拉伸强度/MPa
拉伸弹性模量/MPa
压缩强度/MPa
缺口冲击强度/kJ·m-2
弯曲强度/MPa
41~46
7~20
100~300
12.5
80~90
12~17
40~50
15~25
250~550
—
>70
15~25
60~70
21~37
400~1300
22.5
40~70
25~40
64~67
30~50
150~800
—
>100
—
3.热性能
PE受热后,随温度的升高,结晶部分逐渐熔化,无定形部分逐渐增多。
其熔点与结晶度和结晶形态有关。
HDPE的熔点约为125~137℃,MDPE的熔点约为126~134℃,LDPE的熔点约为105~115℃。
相对分子质量对PE的熔融温度基本上无影响。
PE的玻璃化温度(Tg)随相对分子质量、结晶度和支化程度的不同而异,而且因测试方法不同有较大差别,一般在-50℃以下。
PE在一般环境下韧性良好,耐低温性(耐寒性)优良,PE的脆化温度(Tb)约为-80~-50℃,随相对分子质量增大脆化温度降低,如超高相对分子质量聚乙烯的脆化温度低于-140℃。
PE的热变形温度(THD)较低,不同PE的热变形温度也有差别,LDPE约为38~50℃(0.45MPa,下同),MDPE约为50~75℃,HDPE约为60~80℃。
PE的最高连续使用温度不算太低,LDPE约为82~100℃,MDPE约为105~121℃,HDPE为121℃,均高于PS和PVC。
PE的热稳定性较好,在惰性气氛中,其热分解温度超过300℃。
PE的比热容和热导率较大,不宜作为绝热材料选用。
PE的线胀系数约在(15~30)×10-5K-1之间,其制品尺寸随温度改变变化较大。
几种PE的热性能见表1-2。
表1-2几种PE热性能
性能
LDPE
LLDPE
HDPE
超高相对分子质量聚乙烯
熔点/℃
热降解温度(氮气)/℃
热变形温度(0.45MPa)/℃
脆化温度/℃
线性膨胀系数/(×10-5K-1)
比热容/J·(kg·K)-1
热导率/W·(m·K)-1
105~115
>300
38~50
-80~-50
16~24
2218~2301
0.35
120~125
>300
50~75
-100~-75
—
—
—
125~137
>300
60~80
-100~-70
11~16
1925~2301
0.42
190~210
>300
75~85
-140~-70
—
—
—
4.电性能
PE分子结构中没有极性基团,因此具有优异的电性能,几种PE的电性能见表1-3。
PE的体积电阻率较高,介电常数和介电损耗因数较小,几乎不受频率的影响,因而适宜于制备高频绝缘材料。
它的吸湿性很小,小于0.01%(质量分数),电性能不受环境湿度的影响。
尽管PE具有优良的介电性能和绝缘性,但由于耐热性不够高,作为绝缘材料使用,只能达到Y级(工作温度≤90℃)。
表1-3聚乙烯的电性能
性能
LDPE
LLDPE
HDPE
超高相对分子质量聚乙烯
体积电阻率/Ω·cm
介电常数/F·m-1(106Hz)
介电损耗因数(106Hz)
介电强度/kV·mm-1
≥1016
2.25~2.35
<0.0005
>20
≥1016
2.20~2.30
<0.0005
45~70
≥1016
2.30~2.35
<0.0005
18~28
≥1017
≤2.35
<0.0005
>35
5.化学稳定性
PE是非极性结晶聚合物,具有优良的化学稳定性。
室温下它能耐酸、碱和盐类的水溶液,如盐酸、氢氟酸、磷酸、甲酸、醋酸、氨、氢氧化钠、氢氧化钾以及各类盐溶液(包括具有氧化性的高锰酸钾溶液和重铬酸盐溶液等),即使在较高的浓度下对PE也无显著作用。
但浓硫酸和浓硝酸及其他氧化剂对聚乙烯有缓慢侵蚀作用。
PE在室温下不溶于任何溶剂,但溶度参数相近的溶剂可使其溶胀。
随着温度的升高,PE结晶逐渐被破坏,大分子与溶剂的作用增强,当达到一定温度后PE可溶于脂肪烃、芳香烃、卤代烃等。
如LDPE能溶于60℃的苯中,HDPE能溶于80~90℃的苯中,超过100℃后二者均可溶于甲苯、三氯乙烯、四氢萘、十氢萘、石油醚、矿物油和石蜡中。
但即使在较高温度下PE仍不溶于水、脂肪族醇、丙酮、乙醚、甘油和植物油中。
PE在大气、阳光和氧的作用下易发生老化,具体表现为伸长率和耐寒性降低,力学性能和电性能下降,并逐渐变脆、产生裂纹,最终丧失使用性能。
为了防止PE的氧化降解,便于贮存、加工和应用,一般使用的PE原料在合成过程中已加入了稳定剂,可满足一般的加工和使用要求。
如需进一步提高耐老化性能,可在PE中添加抗氧剂和光稳定剂等。
6.卫生性
PE分子链主要由碳、氢构成,本身毒性极低,但为了改善PE性能,在聚合、成型加工和使用中往往需添加抗氧剂和光稳定剂等塑料助剂,可能影响到它的卫生性。
树脂生产厂家在聚合时总是选用无毒助剂,且用量极少,一般树脂不会受到污染。
PE长期与脂肪烃、芳香烃、卤代烃类物质接触容易引起溶胀,PE中有些低相对分子质量组分可能会溶于其中,因此,长期使用PE容器盛装食用油脂会产生一种蜡味,影响食用效果。
1.1.2聚乙烯的分类
聚乙烯的生产方法不同,其密度及熔体流动速率也不同。
按密度大小主要分为低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)。
其中线性低密度聚乙烯属于低密度聚乙烯中的一种,是工业上常用的聚乙烯,其他分类法有时把MDPE归类于HDPE或LLDPE。
按相对分子质量可分为低相对分子质量聚乙烯、普通相对分子质量聚乙烯、超高相对分子质量聚乙烯。
按生产方法可分为低压法聚乙烯、中压法聚乙烯和高压法聚乙烯。
1.低密度聚乙烯
英文名称:
Lowdensitypolyethylene,简称LDPE
低密度聚乙烯,又称高压聚乙烯。
无味、无臭、无毒、表面无光泽、乳白色蜡状颗粒,密度0.910~0.925g/cm3,质轻,柔性,具有良好的延伸性、电绝缘性、化学稳定性、加工性能和耐低温性(可耐-70℃),但力学强度、隔湿性、隔气性和耐溶剂性较差。
分子结构不够规整,结晶度较低(55%~65%),熔点105~115℃。
LDPE可采用热塑性成型加工的各种成型工艺,如注射、挤出、吹塑、旋转成型、涂覆、发泡工艺、热成型、热风焊、热焊接等,成型加工性好。
主要用作农膜、工业用包装膜、药品与食品包装薄膜、机械零件、日用品、建筑材料、电线、电缆绝缘、吹塑中空成型制品、涂层和人造革等。
2.高密度聚乙烯
英文名称:
HighDensityPolyethylene,简称HDPE
高密度聚乙烯,又称低压聚乙烯。
无毒、无味、无臭,白色颗粒,分子为线型结构,很少有支化现象,是典型的结晶高聚物。
力学性能均优于低密度聚乙烯,熔点比低密度聚乙烯高,约125~137℃,其脆化温度比低密度聚乙烯低,约-100~-70℃,密度为0.941~0.960g/cm3。
常温下不溶于一般溶剂,但在脂肪烃、芳香烃和卤代烃中长时间接触时能溶胀,在70℃以上时稍溶于甲苯、醋酸中。
在空气中加热和受日光影响发生氧化作用。
能耐大多数酸碱的侵蚀。
吸水性小,具有良好的耐热性和耐寒性,化学稳定性好,还具有较高的刚性和韧性,介电性能、耐环境应力开裂性亦较好。
HDPE可采用注射、挤出、吹塑、滚塑等成型方法,生产薄膜制品、日用品及工业用的各种大小中空容器、管材、包装用的压延带和结扎带,绳缆、鱼网和编织用纤维、电线电缆等。
3.线性低密度聚乙烯
英文名称:
LinearLowDensityPolyethylene,简称LLDPE
线形低密度聚乙烯被认为是“第三代聚乙烯”的新品种,是乙烯与少量高级α-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,为无毒、无味、无臭的乳白色颗粒,密度0.918~0.935g/cm3。
与LDPE相比,具有强度大、韧性好、刚性大、耐热、耐寒性好等优点,且软化温度和熔融温度较高,还具有良好的耐环境应力开裂性,耐冲击强度、耐撕裂强度等性能。
并可耐酸、碱、有机溶剂等。
LLDPE可通过注射、挤出、吹塑等成型方法生产农膜、包装薄膜、复合薄膜、管材、中空容器、电线、电缆绝缘层等。
由于不存在长支链,LLDPE的65%~70%用于制作薄膜。
4.中密度聚乙烯
英文名称:
Mediumdensitypolyethylene,简称MDPE
中密度聚乙烯是在合成过程中用α-烯烃共聚,控制密度而成。
MDPE的密度为0.926~0.953g/cm3,结晶度为70%~80%,平均相对分子质量为20万,拉伸强度为8~24MPa,断裂伸长率为50%~60%,熔融温度126~135℃,熔体流动速率为0.1~35g/10min,热变形温度(0.46MPa)49~74℃。
MDPE最突出的特点是耐环境应力开裂性及强度的长期保持性。
MDPE可用挤出、注射、吹塑、滚塑、旋转、粉末成型加工方法,生产工艺参数与HDPE和LDPF相似,常用于管材、薄膜、中空容器等。
5.超高相对分子质量聚乙烯
英文名称:
ultra-highmolecularweightpolyethylene,简称UHMWPE
超高相对分子质量聚乙烯冲击强度高,耐疲劳,耐磨,是一种线型结构的具有优异综合性能的热塑性工程塑料。
其相对分子质量达到300~600万,密度0.936~0.964g/cm3,热变形温度(0.46MPa)85℃,熔点130~136℃。
UHMWPE因相对分子质量高而具有其他塑料无可比拟的优异性能,如耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能,广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。
另外,由于超高相对分子质量聚乙烯优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用,而且,超高相对分子质量聚乙烯耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。
超高相对分子质量聚乙烯纤维的复合材料在军事上已用作装甲车辆的壳体、雷达的防护罩壳、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
由于超高相对分子质量聚乙烯熔融状态的粘度高达108Pa·s,流动性极差,其熔体流动速率几乎为零,所以很难用一般的机械加工方法进行加工。
近年来,通过对普通加工设备的改造,已使超高相对分子质量聚乙烯由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其他特殊方法的成型。
6.茂金属聚乙烯
茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其相对分子质量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等。
1.1.3聚乙烯的成型加工
PE的熔体粘度比PVC低,流动性能好,不需加入增塑剂已具有很好的成型加工性能。
前文已介绍了各类聚乙烯可采用的成型加工方法,下面主要介绍在成型过程中应注意的几个问题。
①聚乙烯属于结晶性塑料,吸湿小,成型前不需充分干燥,熔体流动性极好,流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分。
不宜用直接浇口,以防收缩不均,内应力增大。
注意选择浇口位置,防止产生缩孔和变形。
②PE的热容量较大,但成型加工温度却较低,成型加工温度的确定主要取决于相对分子质量、密度和结晶度。
LDPE在180℃左右,HDPE在220℃左右,最高成型加工温度一般不超过280℃。
③熔融状态下,PE具有氧化倾向,因而,成型加工中应尽量减少熔体与空气的接触及在高温下的停留时间。
④PE的熔体粘度对剪切速率敏感,随剪切速率的增大下降得较多。
当剪切速率超过临界值后,易出现熔体破裂等流动缺陷。
⑤制品的结晶度取决于成型加工中对冷却速率的控制。
不论采取快速冷却还是缓慢冷却,应尽量使制品各部分冷却速率均匀一致,以免产生内应力,降低制品的力学性能。
⑥收缩范围和收缩值大(一般成型收缩率为1.5%~5.0%),方向性明显,易变形翘曲,冷却速度宜慢,模具设冷料穴,并有冷却系统。
⑦软质塑件有较浅的侧凹槽时,可强行脱模。
1.1.4聚乙烯的改性
聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差,采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘接性、生物相容性等性质。
常用的改性方法包括物理改性和化学改性。
1.物理改性
物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法。
常用的方法有增强改性、共混改性、填充改性。
(1)增强改性增强改性是指填充后对聚合物有增强效果的改性。
加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等。
自增强改性也属于增强改性的一种。
①自增强改性。
所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题。
如采用超高相对分子质量聚乙烯(UHMPE)纤维增强LDPE,在加热加压成型的条件下,可以形成良好的界面,最大限度发挥基体和纤维的强度。
②纤维增强改性。
纤维增强聚合物基复合材料由于具有比强度高、比刚度高等优点而得到广泛应用。
如采用经KH-550偶联剂处理的长玻璃纤维(LGF)与PE复合制备的PE/LGF复合材料,当LGF加入量为3O%(质量分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整理 zc8 接地 电阻 测量仪 使用方法