科技论文写作 程伟.docx
- 文档编号:9618566
- 上传时间:2023-02-05
- 格式:DOCX
- 页数:10
- 大小:36.49KB
科技论文写作 程伟.docx
《科技论文写作 程伟.docx》由会员分享,可在线阅读,更多相关《科技论文写作 程伟.docx(10页珍藏版)》请在冰豆网上搜索。
科技论文写作程伟
RESEARCHPROPOSAL
Title:
Estimationofsoilmoistureusingpassivemicrowaveandactivemicrowaveremotesensingdatainaheterogeneouslandscape
Name:
WeiCheng
StudentNo.:
SA13008134
Department:
Schooloflifeandscience
Degreesought:
Master
Supervisor:
XiaomingFeng
Date:
2014.6.8
Tableofcontents
Abstract:
1
Keyword:
1
Introduction2
Literaturereview3
3.1Soilmoistureinversionmodel3
3.2Basisofanestablishedmodel5
Methodology6
4.1Thevegetationindex6
4.2Selectionoftheremotesensingdata6
4.3Apolynomialmodel7
4.4Datacollection7
4.5Dataanalysis7
4.6Limitation8
Timeframe8
Outcomes9
Reference9
Abstract:
Soilmoisture(SM)isacriticalparameterinthehydrologicalcycleandclimateresearch.Duetothecomplexityofregionalecosystems,thereisabiglimitationforfieldmeasurementsofsoilmoisture.Inthispaper,soilmoistureisretrievedbyusingpassivemicrowaveandactivemicrowaveremotesensingdataintheheterogeneouslandscapelevel.EstimatedSMvalueswerethencorrelatedwithinsituSMmeasurementsandtheirrelationshipswerestatisticallyanalyzed.Resultsindicatedstatisticallysignificantcorrelationsbetweenthem,whichexhibitsthepossibilitytoestimateSMfromremotesensingdata.Therefore,SMcanbeenretrievedbycombinewithactiveandpassiveremotesensingonalargescaleheterogeneouslandscape.
Keyword:
soilmoisture;remotesensing;heterogeneouslandscape;insitumeasurement;
Introduction
Landsurfaceiscoveredbyavarietyofvegetationcoverandwaterbody,whichresultsinRegionalecologicalsystemcomplexity.Ecosystemisinfluencedbymanydifferentfactors,whichthusincreasestothecomplexityoftheecosystemandleadtoecosystemstabilityindynamicequilibrium.Inregionalecosystem,soilmoisture(SM)isofimportanceforecosystembalance.Infact,soilmoistureisakeyvariableinland–atmosphereinteractions,sounderstandingofsoilmoisturespatial–temporalvariabilityisoneofthemostimportantissuesinmanyscientificdisciplines,suchasenvironmentalscience,agronomy,atmosphericscience.Therefore,theSMresearchisahotspotinmanyscientificfields.
Duetotheimportanceofsoilmoisture,soitiscriticaltomeasuresoilmoisturebyusingvariousdifferentmethods.Traditionally,SMisusuallymeasuredbyinsitumeasurementsandfieldmeasurements.Thesemethodsarethemostaccuratemethodsforestimatingsoilmoisture,butisexpensive,time-consumingandlabor-intensiveandonlyprovidespointmeasurements.Inaddition,theseconventionalmeasurementscannotmeettheneedsoflarge-scaleandlong-termmeasurementsofsoilmoisture.Therefore,technologicaladvancesinsatelliteremotesensinghaveofferedanalternativetotheseconventionalmeasurementsofSMandenabledustomonitoritathighertemporalandspatialresolutionsatlowercostandlesstime.Inthepaper,usingremotesensingmethodretrievesSMonalargescaleheterogeneouslandscape.
Inaheterogeneouslandscape,ecosystemiscomposedofmanydifferentelements,likewaterbody,vegetation,soilandsoon.Theseelementswillexperiencedifferentchangesinenvironment.Thesephysical,chemicalandbiologicalchangeprocessestakingplaceatthelandsurfacestronglyimpacttheamountofwaterstoredwithintheuppersoillayers.Therefore,inordertoreduceotherfactors’influenceinSMinversion,theappropriateinversionmodelshouldalsobeenestablishedwhenusingremotesensingdataestimatesSM.
Inthepaper,themainpurposeistocombinewithactiveandpassiveremotesensingtoretrievesoilmoisturebyapolynomialmodelandverifyitsreliabilitywhencomparingwithinsitumeasurement.Assuredly,moredetailedaimswecanacquireareasfollows:
1Firstly,selectingasuitableinversionmodelisofimportance,anditshouldincludeasmuchasafactor,suchasvegetation,soiltype.
2Thesefactorsshouldbeenanalyzedtofindouttheextentoftheirinfluenceonsoilmoisturemeasurementandmakethemorder.
3Usingremotesensingdata,SMisestimatedbytheestablishedmodelonalargescaleheterogeneouslandscape.
4Comparingwithinsitumeasurement,thebias,standarddeviation,rootmeansquareerror(RMSE)andcorrelationcoefficientarecomputedandstatisticallyanalyzed
5Limitationsofremotesensingmethodtoestimatesoilmoistureandmodelsareanalyzed.
Literaturereview
3.1Soilmoistureinversionmodel
SoilmoistureinversionmodelisofimportancewhenusingremotesensingdatatoretrieveSM,whichcanenhancetheaccuracyofSMinversion.Soilmoistureinversionmodelisanalgorithm,whichcontainsvariousfactorsaffectingsoilmoisturechange.BinFangetal[1]SMathighspatialresolutioniscriticalforstudyingvariousland-airboundaryinteractions’process.However,currentlytheresolutionofpassivemicrowaveretrievedsoilmoistureislow-around25km(SMOSandAMSR-E).Tosolvethisproblem,asoilmoisturedisaggregationalgorithmbasedonthermalinertiarelationshipbetweendailytemperaturechangeandaveragesoilmoisturemodulatedbyvegetationconditionshasbeenformulated.Thealgorithmcontainssurfacetemperatureandvegetationindex.Althoughtheresultsofthisapproachareveryencouraging,mismatchofthepixelsizeamongthedatasetsusedinthisstudyandtheaccuracyofthedisaggregationalgorithmvariesindifferentseasons.
T.Lacavaetal[2]foundearth'semittedradiationmeasuredfromsatellite(usuallygivenintermsofbrightnesstemperature,BT)stronglydepends,inthemicrowavespectralregion,ontheemissivityand,atalowerextent,onsurfacetemperaturevariations.Inthisspectralregionwaterandsoilhaveverydifferentdielectricpropertieswhichstronglyaffectemissivity.Remotesensingcanreceivethoseemissivity,andcanbeusedinAMSU-basedsoilwetnessindex(SWI)togetSM.Themethodusedinthecatchmentgetagoodresult,buttheAMSU-basedsoilwetnessindicescannotyetbevalidatedinotherdifferentgeographicallocations.Similarly,SWIwasalsoutilizedbychristophPauliketal[3].ButdataheusedwasfromASCAT.
J.A.Sobrinoetal[4]usedAirborneHyperspectralScanner(AHS)andASTERdatatocalculateSM.Thecorrelationbetweenthesurfacetemperature,theNormalizedDifferenceVegetationIndex(NDVI)andtheemissivitywasestablishedbyapolynomialtoretrieveSM.However,themethodhaslimiteduseovermoredenselyvegetatedcrops.
Soilmoistureestimationisalsoagrowingtendencytowardintelligence.Thus,SajjadAhmadetal[5]proposedanovelregressiontechniquecalledSupportVectorMachine(SVM)basedonstatisticallearningtheorythatusesahypothesisspaceoflinearfunctionsbasedonKernelapproach.ThestrengthofSVMliesinminimizingtheempiricalclassificationerrorandmaximizingthegeometricmarginbysolvinginverseproblem.Buttheeffectsofsurfaceroughnessandtopographywerenottakenintoaccountinthemodel.
ApartfromsurfaceSM,NildaSánchezetal[6]consideredprofilesoilmoisture(0-100cmdepth)calculatedbytheFAO56methodology.Buttheresultshowedthatsomewaterdoesremainforacertainperiodoftime,duetheparticularcharacteristicseitherofthesoilprofilecharacteristicsorthevegetationcover.
Bothpassiveandactivemicrowaveremotesensingexistshortcomingsandadvantages.QinLietal[7]utilizedtheirstrength,andthuscombinedpassiveandactivemicrowaveremotesensingwasusedtoretrievesoilmoisture.Theestablishedmodels(THRAandTWRA)includedthebrightnesstemperature(BT),backscatteringcoefficient(BSC)andSurfaceroughness.TheresultindicatedthatTWRAisbetterthanTHRA,butTWRAismoresuitableforbaresurfaceorlowvegetationsurfaces,whileTHRAdoesnothavethislimitation.
ParinazRahimzadeh-Bajgiranetal[8]estimatingsoilmoisture(SM)wasbasedonevaporativefraction(EF)retrievedfromoptical/thermalinfraredMODISdata.EFmodelusingtheremotelysensedlandsurfacetemperature(Ts)/vegetationindexconceptwasmodifiedbyincorporatingNorthAmericanRegionalReanalysis(NAAR)TadataandusedforSMestimation.Theresultindicatedtheaccuracyofthepredictionswasconsiderablybetterforintermediatesoilmoisturevalues,butthemodeltoaccountforextremeconditionswasstillimproved.
SMindices(likeNSMIandSMGM)canachieveahighaccuracyfornon-vegetationinfluencedsoilsamples,buttheiraccuracyislimitedincaseofthepresenceofvegetation.Since,theincreaseofthevegetationcoverleadstonon-linearvariationsoftheindices.SocalibrationofinfluenceofvegetationiscriticalinSMinversionmodel.D.Spengleretal[9]usedhyperspectralartificial3D-canopymodelstocorrecttheinfluenceofvegetationonsurfacesoilmoistureindices.Whenuptoavegetationcoverof75%,thecorrectionfunctionminimizetheinfluencesofvegetationcoversignificantly.Ifthevegetationisdenserthemethodleadstoinadequatequalitytopredictthesoilmoisturecontent.
3.2Basisofanestablishedmodel
Previousstudiesestablishedavarietyofmodelstoretrievesoilmoisturebyusingremotesensingdata,whichexhibittheirstrengthandweakness.Themodelscontainingasmuchasafactorisbetter.WeshouldestablishamodelwhichincludesthosefactorssignificantlyaffectinginSMestimation.Sothemodelshouldincludethesurfacetemperature,thevegetationIndexandtheemissivity.
Methodology
Inaheterogeneouslandscape,soilmoisturestronglyaffectstheecosystembalance,especiallyaridandsemi-aridregions(liketheLoessPlateau).Sofortheseregions,SMresearchisessential.Usingremotesensingdataestimatessoilmoistureonalargescalerange.Weselectthemodelincl
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 科技论文写作 程伟 科技 论文 写作