数学建模食谱问题.docx
- 文档编号:9525539
- 上传时间:2023-02-05
- 格式:DOCX
- 页数:10
- 大小:55.76KB
数学建模食谱问题.docx
《数学建模食谱问题.docx》由会员分享,可在线阅读,更多相关《数学建模食谱问题.docx(10页珍藏版)》请在冰豆网上搜索。
数学建模食谱问题
一、某公司饲养实验用的动物以供出售。
已知这些动物的生长对饲料中的三种营养成分:
蛋白质、矿物质、维生素特别敏感,每个动物每天至少需要蛋白质70g,矿物质3g,维生素100mg,该公司能买到5种不同的饲料,每种饲料1kg的成本如表1所示,每种饲料1kg所含营养成分如表2所示,。
求既能满足动物生长需要又使总成本最低的饲料配方。
表1五种饲料单位质量(1kg)成本
饲料
A1
A2
A3
A4
A5
成本(元)
0.2
0.7
0.4
0.3
0.5
表2五种饲料单位质量(1kg)所含营养成分
饲料
蛋白质(g)
矿物质(g)
维生素(g)
A1
0.30
0.10
0.05
A2
2.00
0.05
0.10
A3
1.00
0.02
0.02
A4
0.60
0.20
0.20
A5
1.80
0.05
0.08
解:
设需要饲料A1,A2,A3,A4,A5的数量分别为x1、x2、x3、x4、x5。
可建立以下线性规划模型:
根据线性规划用MATLAB求解:
c=[0.20.70.40.30.5];
A=[-0.3-2-1-0.6-1.8
-0.1-0.05-0.02-0.2-0.05
-0.05-0.1-0.02-0.2-0.08];
b=[-70;-3;-0.1];
Aeq=[];
beq=[];
vlb=[0;0;0;0;0;0];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
x=
0.0000
0.0000
0.0000
5.7576
36.9697
fval=
20.2121
结论:
最优方案为需要A4饲料为5.7576g,A5饲料为36.9697g.总成本为20.2121元
二、某工厂生产四种不同型号的产品,而每件产品的生产要经过三个车间的加工,根据该厂现有设备和劳动力等生产条件,可以确定各车间每日的生产能力(我们把它们折合成有效工时数来表示)。
各车间每日可利用的有效工时数、每个产品在各车间加工时所花费的工时数以及每件产品可获得的利润见下表。
问每种产品每季度各应该生产多少,才能使这个工厂每季度生产总值最大?
车间
每件产品所需的加工工时
有效工时
(h/d)
1#
2#
3#
4#
I
0.8
0.8
1.1
1.2
160
II
0.6
0.8
0.7
0.8
120
III
0.4
0.5
0.7
0.7
100
利润(元/件)
6
8
9
10
解:
设每日生产1#、2#、3#、4#这四种产品的数量分别是x1、x2、x3、x4。
可建立以下线性规划模型:
根据线性规划用MATLAB求解:
c=[-6-8-9-10];
A=[0.80.81.11.2
0.60.80.70.8
0.40.50.70.7];
b=[160120100];
Aeq=[];
beq=[];
vlb=[0;0;0];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
x=
0.0000
54.7777
38.2215
61.7785
fval=
-1.4000e+003
结论:
最优方案为每日生产1#、2#、3#、4#这四种产品的数量分别是0,4950,3510,5580件,才能使这个工厂每季度生产总值最大
三、天然气资源是现代社会重要的基础能源之一,应合理的开发和利用,对开采天然气的公司可言,准确的预测天然气的产量和可采储量,始终是一项重要而又艰难的工作。
下面是天然气公司在1957-1976年20年间对某气田产量的统计资料。
是根据所给的数据资料,建立该气田产量的预测模型,并编程求解。
年度
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
产量/*
19
43
59
82
92
113
148
151
157
年度
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
产量/*
158
155
137
109
89
79
70
60
53
45
解:
根据表格信息作图如下:
程序:
t=[19571958195919601961196219631964196519661967196819691970197119721973197419751976];
n=[1943598292113148151157158155137109897970605345];
plot(t,n,'r+')
由图可知该油田的产量在1957-1968年处于上升阶段,但从1964年开始上升趋势渐缓;1968年以后处于下降阶段,但自1971以后下降趋势开始渐缓。
所以不妨假设从1957年到1968年为一段一元二次函数,1969年至1976年为一段一元三次函数。
从而简化函数模型
从1957年到1968年为一段一元二次函数:
编程程序
x1=[195719581959196019611962196319641965196619671968];
y1=[1943598292113148151157158155];
a1=polyfit(x1,y1,2);
z1=polyval(a1,x1);
plot(x1,y1,'+',x1,z1,'r');
a1
xlabel('时间年份');
ylabel('产量');
title=('对石油气田的产量的预测');
从1969年至1976年
编程:
y2=[137109897970605345];
x2=[19691970197119721973197419751976]
a2=polyfit(x2,y2,2);
z2=polyval(a2,x2);
plot(x2,y2,'+',x2,z2,'r');
a2
xlabel('时间年份');
ylabel('产量');
title('对石油气田的产量的预测')
可以根据类似的情况,将实际值和模拟值进行比较,从而算出相对误差。
第一段时间1957年到1968
时间年份/t
实际产量/m
拟合产量/m
相对误差
1957
19
14.9587912
27.02%
1958
43
40.31343656
6.66%
1959
59
63.22302697
-6.68%
1960
82
83.68756244
-2.02%
1961
92
101.707043
-9.54%
1962
113
117.2814685
-3.65%
1963
130.4108392
5.82%
1964
148
141.0951548
4.89%
1965
151
149.3344156
1.12%
1966
157
155.1286214
1.21%
1967
158
158.4777722
-0.30%
1968
155
159.3818681
-2.75%
第二段时间1969年至1976年
时间年份/t
实际产量/m
拟合产量/m
相对误差
1969
137
132.9166667
0.030721003
1970
109
112.0595238
-0.02730267
1971
89
94.10714286
-0.05426945
1972
79
79.05952381
-0.0007529
1973
70
66.91666667
0.04607721
1974
60
57.67857143
0.040247678
1975
53
51.3452381
0.032228147
1976
45
47.91666667
-0.06086957
四、设有400万元资金,要求在4年使用完,若在一年使用资金
万元,则可获得效益
万元(设效益不在投资),当年不用的资金可存入银行,年利率为10%,试制定出这笔资金的使用方案,以使4年的经济效益总和为最大。
解:
设表示第年使用的资金数。
由题,得:
第一年:
第二年:
第三年:
第四年:
整理得:
functiony=totle(x)
y=-sqrt(x
(1))-sqrt(x
(2))-sqrt(x(3))-sqrt(x(4));
A=[1,0,0,0;1.1,1,0,0;1.21,1.1,1,0;1.331,1.21,1.1,1];
b=[400,440,484,532.4];
x0=[100,100,100,100];
[x,fmin]=fmincon('totle',x0,A,b)
x=
84.2442
107.6353
128.9030
148.2390
fval=
-43.0821
结论:
最优方案为第一年使用资金84.2万元;第二年,现有资金356.6万元,使用资金107.6万元;第三年,现有资金284.2万元,使用资金128.9万元;第四年,现有资金182.2万元,使用资金148.2万元。
则四年效益总和最大为Max
万元。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学建模 食谱问题 数学 建模 食谱 问题