完整升级版人教版八年级上册数学教案1.docx
- 文档编号:9392619
- 上传时间:2023-02-04
- 格式:DOCX
- 页数:92
- 大小:119.25KB
完整升级版人教版八年级上册数学教案1.docx
《完整升级版人教版八年级上册数学教案1.docx》由会员分享,可在线阅读,更多相关《完整升级版人教版八年级上册数学教案1.docx(92页珍藏版)》请在冰豆网上搜索。
完整升级版人教版八年级上册数学教案1
(此文档为word格式,下载后您可任意编辑修改!
)
12.3.1.1等腰三角形
(一)
教学目标
1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.
教学重点:
1.等腰三角形的概念及性质.2.等腰三角形性质的应用.
教学难点:
等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是.
问题:
那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课:
要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗?
请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?
底边上的高所在的直线呢?
结论:
等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:
等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:
△ABC各角的度数.
分析:
根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:
因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:
1.课本P51练习1、2、3.2.阅读课本P49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:
课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:
1.等边对等角2.三线合一
12.3.1.1等腰三角形
(二)
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系.
教学重点:
等腰三角形的判定定理及推论的运用
教学难点:
正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.
教学过程:
一、复习等腰三角形的性质
二、新授:
提出问题,创设情境
出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.
学生们很想知道,这样估测河流宽度的根据是什么?
带着这个问题,引导学生学习“等腰三角形的判定”.
引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证.
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.
4.引导学生说出引例中地质专家的测量方法的根据.
例题与练习
1.如图2
其中△ABC是等腰三角形的是[]
2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?
).
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?
).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.
④若已知AD=4cm,则BC______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例:
如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.
分析:
引导学生根据题意作出图形,写出已知、求证,并分析证明.
练习:
5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DEBC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
练习:
P53练习1、2、3。
课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
布置作业:
P56页习题12.3第5、6题
12.3.2等边三角形
(一)
教学目的
1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点:
等腰三角形的性质及其应用。
教学难点:
简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角”。
把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。
由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。
我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?
如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:
由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:
本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:
求∠1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合()
b.有一个角是60°的等腰三角形,其它两个内角也为60°()
2.如图
(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P54练习1、2。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。
“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业:
1.课本P57第7,9题。
2、补充:
如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。
12.3.2等边三角形
(二)
教学目标
1.掌握等边三角形的性质和判定方法.2.培养分析问题、解决问题的能力.
教学重点:
等边三角形的性质和判定方法.
教学难点:
等边三角形性质的应用
教学过程
创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:
如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:
由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3.P56页练习1、2
课堂小结:
1.等腰三角形和性质;等腰三角形的条件
布置作业:
1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
12.3.2等边三角形(三)
教学过程
一、复习等腰三角形的判定与性质
二、新授:
1.等边三角形的性质:
三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:
推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。
推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:
已知如图所示,在△ABC中,BD是AC边上的中线,DB⊥BC于B,
∠ABC=120o,求证:
AB=2BC
分析由已知条件可得∠ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.
B
证明:
过A作AE∥BC交BD的延长线于E
∵DB⊥BC(已知)
∴∠AED=90o(两直线平行内错角相等)
在△ADE和△CDB中
∴△ADE≌△CDB(AAS)
∴AE=CB(全等三角形的对应边相等)
∵∠ABC=120o,DB⊥BC(已知)∴∠ABD=30o
在Rt△ABE中,∠ABD=30o
∴AE=AB(在直角三角形中,如果一个锐角等于30o,
那么它所对的直角边等于斜边的一半)
∴BC=AB即AB=2BC
点评本题还可过C作CE∥AB
5、训练:
如图所示,在等边△ABC的边的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,求证:
△CNM是等边三角形.
分析由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等边三角形,只须证MC=CN,∠MCN=60o,所以要证△NBC≌△MAC,由上述已推出的结论,根据边角边公里,可证得△NBC≌△MAC
证明:
∵等边△ABC和等边△DCE,
∴BC=AC,CD=CE,(等边三角形的边相等)
∠BCA=∠DCE=60o(等边三角形的每个角都是60)
∴∠BCE=∠DCA∴△BCE≌△ACD(SAS)
∴∠EBC=∠DAC(全等三角形的对应角相等)
BE=AD(全等三角形的对应边相等)
又∵BN=BE,AM=AD(中点定义)
∴BN=AM∴△NBC≌△MAC(SAS)
∴CM=CN(全等三角形的对应边相等)∠ACM=∠BCN(全等三角形的对应角相等)
∴∠MCN=∠ACB=60o
∴△MCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)
解题小结
1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析
2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△MCN是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键.
三、小结本节知识
四、作业:
课本P58页第13,14题
第十三章实数
平方根
(1)
教学目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
如果这块画布的面积是?
这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
二、导入新课:
1、提出问题:
(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?
(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:
0的算术平方根是0.
也就是,在等式=a(x≥0)中,规定x=.
2、试一试:
你能根据等式:
=124说出124的算术平方根是多少吗?
并用等式表示出来.
3、想一想:
下列式子表示什么意思?
你能求出它们的值吗?
建议:
求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;
(2)1;(3);(4)0.0001
三、练习
P69练习1、2
四、探究:
(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:
课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:
这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?
你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?
(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题14.1活动第1、2、3题
平方根
(2)
教学目标:
1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.
2、能用夹值法求一个数的算术平方根的近似值.
3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。
教学重点:
夹值法及估计一个(无理)数的大小。
教学难点:
夹值法及估计一个(无理)数的大小的思想。
教学过程
一、情境导入
我们已经知道:
正数x满足=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?
例如课本第161页的大正方形的边长等于多少呢?
二、导入新课:
1、问题:
究竟有多大?
让学生思考讨论并估计大概有多大.由直观可知招大于1而小于2,那么了是1点几呢?
(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,大于1.4而小于1.5......
关于是一个“无限不循环小数”要向学生详细说明.为无理数的概念的提出打下基础.
2、(提出问题):
你对正数a的算术平方根的结果有怎样的认识呢?
的结果有两种情:
当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。
3、例2用计算器求下列各式的值:
(1)
(2)(精确到0.001)
注意计算器的用法,指出计算器上显示的也只是近似值,但我们可以利用计算器方便地求出一个正数的算术平方根的近似值.
例3(课本P71-72).
要注意学生是否弄清了题意;然后分析解题思路:
能否裁出符合要求的纸片,就是要比较两个图形的边长,而由题意,易知正方形的边长是20cm,所以只需求出长方形的边长,设长方形的长和宽分别是3xcm和2xcm,求得长方形的长为3cm后,接下来的问题是比较3和20的大小,这是个难点。
三、练习:
课本P72的练习1、2
四、小结:
1、利用计算器可以求出任意正数的算术平方根的近似值.
2、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
3、怎样的数是无限不循环小数?
五、作业课本:
P75-76习题14.1第5、6、9、10题;
平方根(3)
教学目标:
1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.
2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.
教学重点:
平方根的概念和求数的平方根。
教学难点:
平方根和算术平方根的联系与区别
教学过程
一、情境导入
如果一个数的平方等于9,这个数是多少?
讨论:
这样的数有两个,它们是3和-3.注意中括号的作用.
又如:
,则x等于多少呢?
二、新课:
1、平方根的概念:
如果一个数的平方等于a,那么这个数就叫做a的平方根.即:
如果=a,那么x叫做a的平方根.
求一个数的平方根的运算,叫做开平方.
例如:
3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.
2、观察:
课本P73的图14.1-2.
图14.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.
例4求下列各数的平方根。
(1)100
(2)(3)0.25
(注意书写格式)
3、按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?
0的平方根是多少?
负数有平方根吗?
一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:
正数a的算术平方根可用表示;正数a的负的平方根可用-表示.
例5求下列各式的值。
(1),
(2)-,(3)(4),
归纳:
平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
三、练习
课本P75练习1、2、3
四、小结:
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?
数a的平方怎样表示?
五、作业
P75-76习题14.1第3、4、7、8、14、12题。
立方根
(1)
教学目标:
1、了解立方根的概念,初步学会用根号表示一个数的立方根.
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
3、让学生体会一个数的立方根的惟一性.
4、分清一个数的立方根与平方根的区别。
教学重点:
立方根的概念和求法。
教学难点:
立方根与平方根的区别。
教学过程
一、情境导入:
问题:
要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
设这种包装箱的边长为xm,则=27这就是求一个数,使它的立方等于27.
因为=27,所以x=3.即这种包装箱的边长应为3m
二、新课:
1、归纳:
如果一个数的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根
2、探究:
根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?
因为,所以8的立方根是
(2)
因为,所以0.125的立方根是()
因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 升级 版人教版八 年级 上册 数学教案