版人教版六年级数学下册教案.docx
- 文档编号:9298509
- 上传时间:2023-02-04
- 格式:DOCX
- 页数:105
- 大小:149.80KB
版人教版六年级数学下册教案.docx
《版人教版六年级数学下册教案.docx》由会员分享,可在线阅读,更多相关《版人教版六年级数学下册教案.docx(105页珍藏版)》请在冰豆网上搜索。
版人教版六年级数学下册教案
1.负数
【教学目标】
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
【重点难点】
负数的意义和数轴的意义及画法。
【课时安排】
建议共分3课时:
负数的初步认识2课时
在数轴上表示正数、0和负数1课时
第1课时负数的初步认识
(1)
【教学内容】
负数的初步认识
(1)(教材第2页例1)。
【教学目标】
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】
体会负数的重要性。
【教学准备】
多媒体课件。
【情景导入】
1.教师利用课件向学生展示教材第2页主题图。
(有条件的可播放天气预报视频)
2.引导学生观察图片,说出图中内容。
(教师:
观察上图,你能发现什么?
0℃代表什么意思?
-3℃和3℃各代表什么意思?
)
引出课题并板书:
负数的初步认识
(1)
【新课讲授】
教学教材第2页例1。
(1)教师板书关键数据:
0℃。
(2)教师讲解0℃的意思。
0℃表示淡水开始结冰的温度。
比0℃低的温度叫零下温度,通常在数字前加“-”(负号):
如-3℃表示零下3摄氏度,读作负三摄氏度。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:
如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗?
最高气温和最低气温都是多少呢?
随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?
用手势告诉大家好吗?
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:
通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:
-18℃温度低。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第2课时负数的初步认识
(2)
【教学内容】
负数的初步认识
(2)(教材第3页例2)。
【教学目标】
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
【重点难点】
体会引入负数的必要性,初步理解负数的含义。
【新课讲授】
1.教学例2。
(1)教师出示存折明细示意图。
(教材第3页的主题图)教师:
同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?
组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:
像这样的数表示的是存入的钱数;而前面有“-”号的数,像这样的数表示的是支出的钱数。
(3)教师:
上述数据中500和-500意义相同吗?
(500和-500意义相反,一个是存入,一个是支出)。
你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?
说说你是怎么表示的?
师把学生的表示结果一一板书在黑板上。
2.归纳正数和负数。
(1)你能把黑板上板书的这些数进行分类吗?
小组讨论交流。
(2)教师展示分类的结果,适时讲解。
像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。
像-8,-4,-500,-20这样的数,我们把它叫做负数。
(3)那么0应该归为哪一类呢?
组织学生讨论,相互发表意见。
师设难:
“我认为0应该归为正数一类。
”
归纳:
0既不是正数也不是负数,它是正数和负数的分界点。
(4)你在什么地方见过负数?
教师鼓励学生注意联系实际举出更多的例子。
【课堂作业】
完成教材第4页的“做一做”第2题。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第3课时在数轴上表示正数、0和负数
【教学内容】
借助数轴理解正数和负数的意义(教材第5页例3)。
【教学目标】
1.借助数轴初步理解正数、0、负数。
2.初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。
【重点难点】
认识数轴、0。
【情景导入】
教师用CAI课件演示教材第5页的主题图。
教师:
如何在一条直线上表示出他们运动后的情况呢?
【新课讲授】
教学例3。
(1)教师:
怎样用数来表示这些学生和大树的相对位置关系呢?
组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(4)教师总结:
我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
(5)引导学生观察数轴
:
①从0起往右依次是?
从0起往左依次是?
你发现什么规律?
②在数轴上分别找到
1.5和-1.5对应的点。
如果从起点分别到1.5和-1.5处,应如何运动?
师及时小结,数轴除了可以表示整数,还可以表示小数、分数。
每个数都能在数轴上找到它们相对应的点。
【课堂作业】
1.完成教材第5页的“做一做”。
学生独立练习,指名汇报。
2.完成教材第6页练习一的第4题。
第4题组织学生独立完成,并在小组中相互交流、检查。
教师用课件出示答案、订正。
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
2百分数
(二)
【教学目标】
1.理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。
2.在理解、分析数量关系的基础上,使学生能正确地回答有关百分数的问题。
【重点难点】
利用百分数解决实际问题。
【课时安排】
建议共分5课时:
折扣1课时成数1课时税率1课时利率1课时解决问题1课时
【知识结构】
第1课时折扣
【教学内容】
折扣(教材第8页的内容,练习二第1~3题)。
【教学目标】
1.明确折扣的含义。
2.能熟练地把折扣写成分数、百分数。
3.正确解答有关折扣的实际问题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
【重点难点】
1.会解答有关折扣的实际问题。
2.合理、灵活地选择方法,解答有关折扣的实际问题。
【情景导入】
圣诞节期间各商家搞了哪些促销活动?
谁来说说他们是怎样进行促销的?
(学生汇报调查情况。
)
【新课讲授】
1.教学折扣的含义,会把折扣改写成百分数。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?
比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。
(电脑显示)
①大衣,原价:
1000元,现价:
700元。
②围巾,原价:
100元,现价:
70元。
③铅笔盒,原价:
10元,现价:
?
④橡皮,原价:
1元,现价:
?
(3)动脑筋想一想:
如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?
如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?
带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。
(5)讨论,找规律。
(6)归纳,得定义。
(7)练习。
①四折是十分之(),改写成百分数是()。
②六折是十分之(),改写成百分数是()。
③七五折是十分之(),改写成百分数是()。
④九二折是十分之(),改写成百分数是()。
2.运用折扣含义解决实际问题。
出示问题
(1):
爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。
买这辆车用了多少钱?
1导学生分析题意:
打八五折怎么理解?
是以谁为单位“1”?
2找出数量关系式。
3学生独立根据数量关系式,列式解答。
④全班交流。
根据学生的汇报,板书:
180×85%=153(元)
出示问题
(2):
爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
1导学生理解题意:
只花了九折的钱怎么理解?
以谁为单位“1”?
2学生试算,独立列式。
③全班交流。
根据学生的汇报,板书:
第一种算法:
原价160元,减去现价,就是比原价便宜多少钱。
第二种算法:
原价160元,现价比原价便宜了(1-90%)。
重点引导学生理解第二种算法,知道现价比原价便宜了10%。
【课堂作业】
2.完成教材第8页“做一做”练习题。
3.完成教材第13页练习二第1~3题。
【课堂小结】
通过这节课的学习你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第2课时成数
【教学内容】
成数(教材第9页内容)。
【教学目标】
1.明确成数的含义。
2.能熟练的把成数写成分数、百分数。
3.正确解答有关成数的实际问题。
【重点难点】
1.成数的理解。
2.成数的计算。
【情景导入】
农业收成,经常用“成数”来表示。
例如,报纸上写道:
“今年我省油菜籽比去年增产二成”……
教师:
同学们有留意到类似的新闻报道吗?
(学生汇报相关报导)
【新课讲授】
1.介绍成数的含义,会把成数改写成分数,百分数。
(成数:
表示一个数是另一个数的十分之几,通称“几成”)
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?
比如说,增产“二成”,你怎么理解?
(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。
这里的“三成”表示什么?
②北京出游人数比去年增加两成。
这里的两成表示什么?
引导学生讨论并回答。
2.运用成数的含义解决实际问题。
(1)出示教材第9页例2:
某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?
是以哪个量为单位“1”?
②找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式:
今年的用电量=去年的用电量×(1-25%)
③学生独立根据关系式,列式解答。
④全班交流。
【课堂作业】
完成教材第9页“做一做”。
【课堂小结】
这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?
【课后作业】
完成练习册中本课时的练习。
第3课时税率
【教学内容】
税率(教材第10页有关纳税的内容,练习二第6、7题)。
【教学目标】
1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。
3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
【重点难点】
1.税额的计算。
2.税率的理解。
【情景导入】
1.口答算式。
(1)100的5%是多少?
(2)50吨的10%是多少?
(3)1000元的8%是多少?
(4)50万元的20%是多少?
2.什么是比率?
【新课讲授】
1.阅读教材第10页有关纳税的内容。
说说:
什么是纳税?
2.税率的认识。
(1)说明:
纳税的种类很多,应纳税额的计算方法也不一样。
应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。
(2)试说说以下税率表示什么。
A.商店按营业额的5%缴纳个人所得税。
这里的5%表示什么?
B.某人彩票中奖后,按奖金的20%缴纳个人所得税。
这里的20%表示什么?
3.税款计算。
(1)出示例3:
一家饭店十月份的营业额约是30万元。
如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?
(2)分析题目,理解题意。
引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。
(3)学生列出算式。
求一个数的百分之几是多少,用乘法计算。
列式:
30×5%
(4)学生尝试计算。
(5)汇报交流。
【课堂作业】
1.巩固练习:
教材第10页“做一做”。
2.完成教材第14页练习二第6题。
【课堂小结】
这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?
【课后作业】
1.完成练习册中本课时的练习。
2.教材第14页第7题。
第4课时利率
【教学内容】
利率(教材第11页有关利率的内容)。
【教学目标】
1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。
【重点难点】
1.掌握利息的计算方法。
2.正确地计算利息,解决利息计算的实际问题。
【教学准备】
多媒体课件。
【新课讲授】
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。
(例如:
王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。
)(注:
这里不考虑利息税)
本金:
存入银行的钱叫做本金。
王奶奶存入的5000元就是本金。
利息:
取款时银行多支付的钱叫做利息。
利率:
利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。
3.学会填写存款凭条。
把存款凭条画在黑板上,请学生尝试填写。
然后评讲。
(要填写的项目:
户名、存期、存入金额、存种、密码、地址等,最后填上日期。
)
4.利息的计算。
(1)出示利息的计算公式:
利息=本金×利率×时间
(2)计算方法:
若按照2012年7月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?
学生计算后交流,教师板书:
5000×3.75%×2=375(元)
加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。
【课堂作业】
本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。
【课堂小结】
通过本节课的学习,你学会了什么?
什么叫本金?
什么叫利息?
什么叫利率?
如何计算利息?
【课后作业】
1.完成练习册中本课时的练习。
2.教材第14页第9题。
第5课时解决问题
【教学内容】
用百分数解决问题。
(教材第12页例5)
【教学目标】
1.熟练地掌握百分数应用题的数量关系,并能解决问题。
2.培养学生良好的学习习惯。
【重点难点】
认真审题,用百分数解决实际问题。
【教学准备】
多媒体课件。
【复习导入】
前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。
口头列式。
(1)妈妈想买一件原价500元的裙子,五折之后这条裙子多少钱?
(2)爸爸这个月工资由原来的6000元涨了一成五,爸爸现在工资是多少?
(3)爸爸的月工资是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?
(4)小云将压岁钱1000元存入银行,存期为3年,年利率为4.25%。
到期支取时,小云一共能取回多少钱?
师:
这几道题分别属于什么类型的应用题?
学生交流,汇报。
【新课讲授】
教学例5。
1.学生读题,明确已知条件及问题,尝试说说自己的解题思路。
2.利用提问,引导学生思考回答,归纳出解题思路。
教师:
“满100元减50元”是什么意思?
引导回答:
就是在总价中取整百元部分,每个100元减去50元。
不满100元的零头部分不优惠。
解题思路:
(1)在A商场买,直接用总价乘以50%就能算出实际花费。
(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。
3.学生独立列出算式后,让他们计算并给出结果。
板书:
A:
230×50%=115(元)
B:
230-2×50=130(元)
A
4.回顾与反思。
提问:
通过计算,我们知道了A商场更省钱,在什么时候两个商场价格差不多呢?
反思:
看起来满100减50元不如打五折实惠。
如果总价能凑成整百多一点就差不多了。
【课堂作业】
完成教材第12页“做一做”。
【课堂小结】
通过这节课,你有什么收获,你将如何运用到生活中呢?
【课后作业】
完成练习册中本课时的练习。
3圆柱与圆锥
【教学目标】
1.认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决相关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型的活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
使学生经历探索知识的过程,培养学生自主解决问题的能力。
【重点难点】
1.认识并掌握圆柱和圆锥的形体特征,掌握圆柱表面积和体积、圆锥体积的计算方法及推导过程。
2.利用所学的知识解决实际问题。
【课时安排】建议共分10课时:
1.圆柱6课时
2.圆锥3课时
整理和复习1课时
1.圆柱
第1课时圆柱的认识
【教学内容】
圆柱的认识(教材第17~20页)。
【教学目标】
1.使学生了解圆柱的特征,认识圆柱的底面及其直径和半径,圆柱的高、侧面及圆柱的展开图。
2.通过观察,认识圆柱并掌握它的特征,建立空间观念。
3.培养学生的观察能力,增强从实物抽象到几何图形的能力。
【重点难点】
1.理解并掌握圆柱的特征,建立空间观念。
2.明确圆柱沿高展开的侧面展开图是一个长方形(或正方形),理解长方形(侧面展开图)的长和宽与圆柱的底面周长和高的关系。
【情景导入】
师:
今天我给大家带来一位朋友,你们知道它是谁吗?
(师拿起圆柱体模型,让学生一起说出它的名字。
)
师:
在一年级我们就看见过它,却没有深刻认识它,想不想进一步认识它?
师:
好,那么我们这节课就来认识一下圆柱,一起走近它,看看它究竟有什么奥秘。
(教师板书课题:
圆柱的认识。
)
【新课讲授】
1.初步感知圆柱。
(1)大家找一找我们生活的周围有哪些圆柱形的物体,谁能说一说?
(师指名回答)
(2)教师展示课件中常见的圆柱形物体。
(3)教师:
这些物体有哪些共同的特点?
大家也可以拿出自己手中的圆柱形物体看一看,摸一摸。
(4)教师又拿出几个不是圆柱,接近圆柱形物体,然后问:
它们是圆柱吗?
为什么?
那么什么样的物体才是真正的圆柱?
学生回答后,教师强调:
圆柱一定是直直的,上下一样粗细。
2.教学例1。
(1)认识圆柱的面。
分组活动,每人拿一个圆柱,摸一摸它的面。
学生互相交流自己的感觉。
启发学生自主探究圆柱的特征。
教师:
圆柱一共有几个面?
用手摸上、下底,看一看有什么特点?
再摸一摸侧面,有什么感觉,它是一个什么面?
学生:
3个面;形状相同,都是圆形,面积相等;曲面。
教师小结:
圆柱的上下两个面叫做底面,它们是完全相同的两个圆。
圆柱的侧面是一个曲面。
教师在黑板上画出圆柱图,并把上下底面、侧面标出来。
(2)认识圆柱的高。
①教师出示高、矮不同的圆柱体提问:
哪个圆柱高,哪个圆柱矮?
②如何测量圆柱的高?
小组讨论,找出测量方法。
然后请一名学生展示自己的测量方法。
(3)教师出示准备好的长方形纸片。
教师:
同学们和我一起快速转动纸片,看一看转出来的是什么形状。
组织学生操作后,汇报结果。
3.教学例2。
(1)请同学们摸一摸你们的圆柱体的侧面,猜想一下,如果把侧面展开后会是什么形状?
(2)组织学生分小组操作:
剪开侧面,再展开。
(3)教师:
你们有什么发现?
会有几种情况出现?
小组之间可以相互交流。
(4)大家再认真观察展开图的长和宽并和圆柱相比较,此时的长相当于圆柱的什么?
宽呢?
学生观察并思考。
教师用课件将长方形还原并再打开。
(5)引导学生思考:
什么情况下圆柱的侧面展开图是正方形?
【课堂作业】
1.完成教材第18、19页的“做一做”。
2.完成教材第20页练习三的第1、2、3题。
【课堂小结】
通过这节课的学习,你有哪些收获?
组织学生畅谈学习的收获。
【课后作业】
完成练习册中本课时的练习。
第2课时圆柱的表面积
(1)
【教学内容】
圆柱的表面积
(1)(教材第21页例3)。
【教学目标】
1.理解圆柱的表面积的意义。
2.探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。
【重点难点】
1.掌握圆柱的侧面积和表面积的计算方法。
2.理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。
【教学准备】
多媒体课件和圆柱体模型。
【复习导入】
1.复习引入。
指名学生说出圆柱的特征。
2.口头回答下面的问题。
(1)一个圆形花池,直径是5m,周长是多少?
(2)长方形的面积怎样计算?
板书:
长方形的面积=长×宽。
【新课讲授】
1.教师出示圆柱形实物,师生共同研究圆柱的侧面积。
2.教学例3。
(1)圆柱的表面积的含义。
(2)计算圆柱的表面积。
①师:
圆柱的表面展开后是什么样的?
组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。
引导学生说出:
圆柱的表面是由两个底面和一个侧面组成。
②组织学生自主探究、交流,该如何计算圆柱的表面积。
指名发言,教师归纳:
圆柱的表面积=圆柱的侧面积+两个底面积。
(3)巩固练习:
教材第21页“做一做”。
组织学生独立完成,请两名学生板演后集体订正。
【课堂小结】
通过这节课的学习,你有哪些收获?
【课后作业】
完成练习册中本课时的练习。
第3课时圆柱的表面积
(2)
【教学内容】
圆柱的表面积
(2)(教材第22页例4)
【教学目标】
能灵活运用求圆柱侧面积、表面积的相关知识,解决生活中的实际问题。
【重点难点】
运用圆柱的表面积公式解决问题。
【教学准备】
多媒体课件和圆柱体模型。
【复习导入】
前面我们已经学习了圆柱的表面积计算公式,有同学能说一说么?
指名学生回答。
板书:
圆柱的表面积=圆柱的侧面积+两个底面面积
圆柱的侧面积=圆柱的底面周长×高
【新课讲授】
教学例4。
(1)出示例4。
学生读题,明确已知条件:
已知圆柱的高和底面直径,求表面积。
(2)求厨师帽所用的材料,需要注意:
厨师帽没有下底面,说明它只有一个底面。
(3)指定两名学生板演,其他学生独立进行计算。
教师巡视,注意看学生所算最后的得数是否正确。
(4)巩固练习。
①教材第22页“做一做”第1题。
组织学生独立完成。
②教材第22页第2题。
请三名学生板演,其余同学做在草稿本上。
【课堂作业】
完成教材第23~24页练习四的第7~12题。
【课堂小结】
通过这节课的学习,你有哪些收获?
【课后作业】
完成练习册中本课时的练习。
第4课时圆柱的体积
(1)
【教学内容】
圆柱的体积(教材第25页例5)。
【教学目标】
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 版人教版 六年级 数学 下册 教案