acousticsworkshop1kw副本.docx
- 文档编号:9185729
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:17
- 大小:75.59KB
acousticsworkshop1kw副本.docx
《acousticsworkshop1kw副本.docx》由会员分享,可在线阅读,更多相关《acousticsworkshop1kw副本.docx(17页珍藏版)》请在冰豆网上搜索。
acousticsworkshop1kw副本
Note:
ThisworkshopprovidesinstructionsintermsoftheABAQUSKeywordsinterface.IfyouwishtousetheABAQUSGUIinterfaceinstead,pleaseseethe“Interactive”versionoftheseinstructions.
PleasecompleteeithertheKeywordsorInteractiveversionofthisworkshop.
Goals
Whenyoucompletethisworkshop,youwillbeableto:
∙Determinethenaturalfrequenciesofanacousticdomain.
∙Determinethesteady-statedynamicresponseofanacousticsystem.
∙Defineaclassicalacousticplane-waveabsorbingboundary.
∙Defineacousticexcitationloads.
∙ViewrealandimaginarycomponentsofacousticpressurewithABAQUS/Viewer.
∙UseABAQUS/Viewertocreatepathplotsofacousticoutputdata.
Introduction
Asimpleacousticmodelofasectionofairductwillbeusedtointroducesomeofthebasicanalysistechniquesthatcanbeappliedtoanacousticmesh.Inthisworkshopyouwilladdimportantmodelingdetailstocompletethesuppliedanalysisinputfilethatalreadycontainsbasicmodelingdatasuchasnode,element,andmaterialdefinitions,fortheairductsectionshowninFigureW1–1.Themodelforthisworkshoprepresentsonlytheairinsidetheduct.Therefore,theacousticnaturalboundaryconditionofinfiniteimpedanceatameshboundaryimpliesrigidductwalls.Youwillperformnaturalfrequencyextractionanalyseswithdifferentsetsofacousticboundaryconditionsassignedtotheendsoftheduct.Youwillthenperformaseriesofsteady-statedynamicresponseanalysesonthemodelusingdifferentexcitationmethods.Thesteady-statedynamicanalyseswillalsoincludethedefinitionofacousticplane-waveabsorbingboundaryimpedanceatoneendoftheducttoinvestigatepostprocessingoftravelingwavesforfrequency-domainsolutions.
TheairductsectionmodelshowninFigureW1–1issuppliedtoyouintermsofaninputfile,whichusestheABAQUSparametricinputcapability.Theparametervaluesdefinedintheinputfileshouldnotbechangedforthisworkshop.However,aftercompletionofthisworkshopyoumaywanttoconsidermodifyingthemeshingparameterstoperformadditionalconvergenceandaccuracystudies.Theairductsectionis4.25mlongandhasarectangularcross-sectionthatis0.2mby0.125m.Theacousticmediumisairwithadensityof1.225kg/m3andasoundspeedof340m/s.Thus,theeffectivebulkmodulusis141610Pa.Themodelisdesignedtoprovidereasonablequantitativeresultsforanalysesupto400Hzandutilizesfirst-orderacousticelementsthatare0.085mlong.Thismeshrefinementcorrespondsto10elements(nodaldivisions)peracousticwavelengthataresponsefrequencyof400Hz.Thelargestcross-sectionaldimensionoftheductissignificantlylessthanone-halfthe400Hzacousticwavelength;therefore,theductcross-sectioncanbemodeledwithasingleelement.
FigureW1–1Modelofasimpleairductsection.
Note:
Ingeneral,second-orderacousticelementsaremoreaccuratethanfirst-orderacousticelementsforthesamemeshnodaldensity.However,first-orderelementscanprovidenearlyasgoodanapproximationtoasinusoidalacousticpressurewaveascansecond-orderelementsaslongasthenodaldistributionsaresimilar.Therefore,whenperformingacousticanalysesinwhichdeterminingthepressurefieldisofprimaryinterest,first-orderelementsareoftenusedbecausetheyareeasiertoworkwithintermsofmeshing,definingacousticloads,andinputfileediting.Themainadvantageofsecond-orderacousticelementsisthattheyprovideforapiecewiselinearapproximationofthepressuregradients(and,thus,theparticlevelocities),whilethefirst-orderelementsproduceapiecewiseconstantapproximation.Therefore,formesheswithsimilarnodaldensities,thesecond-orderelementswillprovidesignificantlybetterquantitativeresultsforitemssuchasacousticintensity(power)thatrequireaccurateestimatesofpressuregradientsandparticlevelocities.Usingfirst-orderacousticelementstodetermineapressurefieldisanalogoustousingfirst-orderstress-displacementelementstodeterminestiffness,whileusingsecond-orderacousticelementstodetermineacousticintensityisanalogoustousingsecond-orderstress-displacementelementstodetermineastress/strainconcentration.
Case1:
Naturalfrequencyextraction(rigid-rigidends)
ThefirstanalysisforWorkshop1involvesextractingthenaturalfrequenciesoftheairductsectionshowninFigureW1–1forthecasewherebothendsoftheductutilizethenaturalboundaryconditionassociatedwithanacousticmesh.Therefore,forthiscaseno*BOUNDARYor*CLOADoptionsareappliedtotheacousticpressuredegreeoffreedom.Thenaturalboundaryconditionassociatedwiththesurfaceofanacousticmeshcorrespondstoinfiniteboundaryimpedance.Themeshboundarycanthereforebeenvisionedasaninfinitelyrigidsurface.
1.Entertheworkingdirectoryforthisworkshop:
../acoustics/keywords/workshop1
2.Thefileacoust-ws1-template.inpcontainsaparametricmodeloftheairductsection.Copyacoust-ws1-template.inptoafilenamedws1-1.inp.Openws1-1.inpinatextfileandreviewitscontents.
3.Addthe*STEPoptionalongwithanappropriatedescriptivesubheading.
4.Addthe*FREQUENCYoptiontoextractthemodel’snaturalfrequencies.ItisrecommendedthattheLanczoseigensolverbeselectedviatheEIGENSOLVERparameter.Theextractionofnaturalfrequenciesforanacousticmeshinrealworldproblemswilllikelyinvolverelativelylargemodels,forwhichtheLanczoseigensolverismoreefficientthanthesubspaceiterationeigensolver.Inaddition,theLanczoseigensolverwillallowyoutoselectaprecisefrequencyrangefortheeigenvalueextraction.Extractthenaturalfrequenciesintherangefrom5Hzto400 Hzwithashiftpointcorrespondingto100Hz.
*FREQUENCY,EIGENSOLVER=LANCZOS
25,5.0,400.0,10000.0
5.Basicoutputrequestsforthisanalysisarecontainedintheinputfileanddonotneedtobemodified.However,notethattheoutputvariableidentifierfortheacousticpressureisPOR.
6.Savethemodifiedinputfilews1-1.inpandruntheABAQUS/Standardanalysis.
7.Reviewtheprintedoutputfilews1-1.datinatexteditor.ComparethenaturalfrequencieslistedintheEigenvalueOutputtabletotheexactclassicalvaluesforthisproblem.Theclassicalsolutionisforafundamentalmodeof40Hzwithanintervalof40Hzbetweensuccessivemodes.
8.Aftertheanalysiscompletes,startanABAQUS/Viewersessionandopentheoutputdatabasefilews1-1.odb.ViewtheacousticmodeshapesbycreatingcontourplotsofthepressurevariablePOR(PlotContours).
9.DefineapathalongthelengthoftheductsectionandcreateaplotofPORalongthispathusingtheprocedurebelow.
a.Fromthemainmenubar,selectToolsPathCreate.
b.IntheCreatePathdialogbox,acceptthedefaultpathname(Path-1)andtype(Nodelist).ClickContinue.
c.IntheEditNodeListPathdialogbox,clickAddBefore.
d.Intheviewport,selectthestartandendpointsforthepath,asshowninFigureW1–2.ClickDoneinthepromptarea.
e.ThetableintheEditNodeListPathdialogboxnowcontainstheselectednodelabels.ClickOKtocompletethepathdefinition.
f.Fromthemainmenubar,selectToolsXYDataCreate.
g.IntheCreateXYDatadialogbox,choosePathandclickContinue.
h.IntheXYDatafromPathdialogbox,toggleonIncludeintersectionstoobtainX–Ydataatlocationswherethepathintersectsthemodelaswellasatthepointsthatmakeupthepath.
i.IntheYValuesportionoftheXYDatafromPathdialogbox,clickStep/Frame.IntheStep/Framedialogboxthatappears,choosethemodeofinterestandclickOK.
j.IntheCreateXYDatadialogbox,clickPlottogeneratethepathplot.
FigureW1–2containsexamplesofbothacontourandapathplotforthefifthmode.
FigureW1–2Fifthacousticmodeshapeofthe
airductsectionwithrigid-rigidends.
CASE2:
Naturalfrequencyextraction(rigid-freeends)
Asstatedearlier,thenaturalboundaryconditionassociatedwiththesurfaceofanacousticmeshcorrespondstoinfiniteboundaryimpedance.Thisimpliesthattheacousticparticlevelocitynormaltotheboundarysurfaceiszero.Theboundarysurfacecan,therefore,bethoughtofasrigid.Thenaturalboundaryconditionischaracterizedbyazeropressuregradient,asillustratedintheCase1analysisbythepathplotshowninFigureW1–2.Assigningavaluetotheacousticpressuredegreeoffreedomataboundingsurfacerepresentsakinematicboundaryconditionandcorrespondstozeroboundaryimpedance.Thistypeofboundaryconditionallowsacousticparticlestomovefreelyacrosstheboundingsurface.Theacousticparticlevelocityattheboundingsurface,characterizedbythepressuregradient,isthenunknowninamanneranalogoustoareactionforceinstructuralmechanics.Forthisanalysiscaseyouwilldeterminethenaturalfrequenciesoftheairductsectioninwhichoneendhasinfiniteboundaryimpedance(rigid)andtheotherhaszeroboundaryimpedance(free).
1.CopyyourCase1inputfile(ws1-1.inp)toafilenamedws1-2.inpandopenthenewfileinatexteditor.
2.Applyazeropressureboundarycondition(kinematic)tothenodesatEnd1oftheairductsection(seeFigureW1–1).The*BOUNDARYoptionisusedwithdegreeoffreedom8(pressure)settozeroforthenodesetDUCT_END1.
*BOUNDARY
node_number_or_set,8,8,0.0
3.SavethemodifiedinputfileandruntheABAQUS/Standardanalysis.
4.Reviewtheprintedoutputfilews1-2.datinatexteditor.ComparethenaturalfrequencieslistedintheEigenvalueOutputtabletotheexactclassicalvaluesforthisproblem.Theclassicalsolutionisforafundamentalmodeof20Hzwithan
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- acousticsworkshop1kw 副本