冀教版七年级上册数学知识汇总.docx
- 文档编号:9099859
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:12
- 大小:88.96KB
冀教版七年级上册数学知识汇总.docx
《冀教版七年级上册数学知识汇总.docx》由会员分享,可在线阅读,更多相关《冀教版七年级上册数学知识汇总.docx(12页珍藏版)》请在冰豆网上搜索。
冀教版七年级上册数学知识汇总
有理数
1.有理数:
(1)凡能写成
形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:
0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:
①
②
(3)注意:
有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:
a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:
绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
或
;绝对值的问题经常分类讨论;
(3)
;
;
(4)|a|是重要的非负数,即|a|≥0;注意:
|a|·|b|=|a·b|,
.
5.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
6.互为倒数:
乘积为1的两个数互为倒数;注意:
0没有倒数;若a≠0,那么
的倒数是
;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:
a+b=b+a;
(2)加法的结合律:
(a+b)+c=a+(b+c).
9.有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11有理数乘法的运算律:
(1)乘法的交换律:
ab=ba;
(2)乘法的结合律:
(ab)c=a(bc);
(3)乘法的分配律:
a(b+c)=ab+ac.
12.有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:
零不能做除数,
.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:
当n为正奇数时:
(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:
(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;
(4)据规律
底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:
先乘方,后乘除,最后加减;注意:
怎样算简单,怎样算准确,是数学计算的最重要的原则.
19.特殊值法:
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
几何图形的初步认识
1、我们把实物中抽象的各种图形统称为几何图形。
几何图形分为立体图形和平面图形。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
几何体简称为体。
6、包围着体的是面,面有平的面和曲的面两种。
7、面与面相交的地方形成线(线有直的和曲的),线和线相交的地方是点(点无大小之分)。
8、点动成线,线动成面,面动成体。
9、几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
10、正方体的11种展开图:
①“141型”,中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
②“132型”,中间3个作侧面,共3种基本图形。
③“222型”,两行只能有1个正方形相连。
④、“33型”,两行只能有1个正方形相连。
11、经过两点有一条直线,并且只有一条直线。
简述为:
两点确定一条直线(公理)。
12、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
13、射线和线段都是直线的一部分。
14、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。
15、两点的所有连线中,线段最短。
简单说成:
两点之间,线段最短。
(公理)
16、连接两点间的线段的长度,叫做这两点的距离。
17、一般地,用一个大写字母表示一个点,用两个大写字母(也就是两个点)或者一个小写字母来表示直线。
18、有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
19、把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
20、角的度、分、秒是60进制的。
21、以度、分、秒为单位的角的度量制,叫做角度制。
22、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
23、如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
24、如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
25、等角的补角相等,等角的余角相等。
代数初步知识
1.代数式:
用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:
用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×
应写成
a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成
的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
3.几个重要的代数式:
(m、n表示整数)
(1)a与b的平方差是:
a2-b2;a与b差的平方是:
(a-b)2;
(2)若a、b、c是正整数,则两位整数是:
10a+b,则三位整数是:
100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:
5m+n;偶数是:
2n,奇数是:
2n+1;三个连续整数是:
n-1、n、n+1;
(4)若b>0,则正数是:
a2+b,负数是:
-a2-b,非负数是:
a2,非正数是:
-a2.
整式的加减
1.单项式:
在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:
单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:
几个单项式的和叫多项式.
4.多项式的项数与次数:
多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:
(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:
凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:
.
6.同类项:
所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:
系数相加,字母与字母的指数不变.
8.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:
整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:
把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:
多项式计算的最后结果一般应该进行升幂(或降幂)排列.
一元一次方程
1.等式与等量:
用“=”号连接而成的式子叫等式.注意:
“等量就能代入”!
2.等式的性质:
等式性质1:
等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:
等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:
含未知数的等式,叫方程.
4.方程的解:
使等式左右两边相等的未知数的值叫方程的解;注意:
“方程的解就能代入”!
5.移项:
改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:
ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:
ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:
整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:
…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:
“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:
…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题:
距离=速度·时间
;
(2)工程问题:
工作量=工效·工时
;
(3)比率问题:
部分=全体·比率
;
(4)顺逆流问题:
顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度;
(5)商品价格问题:
售价=定价·折·
,
利润=售价-成本,
;
(6)周长、面积、体积问题:
C圆=2πR,S圆=πR2,
C长方形=2(a+b),S长方形=ab,
C正方形=4a,S正方形=a2,S环形=π(R2-r2),
V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=
πR2h.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冀教版七 年级 上册 数学知识 汇总