动物生物学名词解释.docx
- 文档编号:8933963
- 上传时间:2023-02-02
- 格式:DOCX
- 页数:14
- 大小:30.88KB
动物生物学名词解释.docx
《动物生物学名词解释.docx》由会员分享,可在线阅读,更多相关《动物生物学名词解释.docx(14页珍藏版)》请在冰豆网上搜索。
动物生物学名词解释
动物生物学名词解释
动物生物
原生动物门
1.食物泡(Foodvacuole):
食物进入原生动物体内后被细胞质形成的膜包围形成,食物泡随原生质流动,并经消化酶消化,消化后的营养物质从食物泡进入内质,不能吸收的食物残渣由体表或胞肛排出体外。
2.胞肛(Cytopyge):
又称肛点,是不能消化的食物残渣从体表固定位置排出体外的胞器。
3.胞口:
原生动物门纤毛虫纲的多数动物用以取食的细胞器的一个结构,位于胞咽之前。
4.胞咽:
原生动物门纤毛虫纲的多数动物用以取食的细胞器的一个结构,位于胞口之后。
5.表膜(pellicle):
又称皮膜,是原生动物身体表面一层很薄的原生质膜,使身体保持了一定形状。
表膜的弹性又可使身体适应改变形状。
6.大核:
纤毛虫类都具大核和小核两种类型的细胞核,大核负责纤毛虫的正常代谢、细胞分化控制等。
大核可以通过DNA的复制成为多倍体
核。
7.小核:
是纤毛虫类两种类型的细胞核的一种。
一般较小,呈球形,数目不定,小核负责基因的交换重组并由它产生大核,小核均为二倍体,因此又称为生殖核。
8.伸缩泡(contracrtilevacuole):
是原生动物体内水分调节细胞器,兼有排泄功能。
不同种类的原生动物伸缩泡的结构不尽相同,纤毛虫的伸缩泡最复杂,每个伸缩泡有6-10个收集管,收集管周围有很多网状小管,收集内质中的多余水分及部分代谢产物,最终由伸缩泡与外界相通的小孔排出体外。
9.收集管(collectingcanals):
纤毛虫体内与伸缩泡相通的,周期性地将内质网收集的水分集中注入伸缩泡的结构。
10.外质(ectoplasm):
原生动物的细胞质靠近表膜的一层,光镜下外质透明清晰,较致密。
在变形虫中可以看到外质与内质相互转化。
外质可以分化出一些特殊的结构,如腰鞭毛虫的刺丝囊(nematocyst),丝孢子虫的极囊(polarcapsule),纤毛虫的刺丝泡(trichocyst)等。
11.内质(endoplasm):
原生动物的细胞质不靠近表膜的部分,光镜下不透明,含有油滴、淀粉、副淀粉等颗粒,内质中含有各种细胞器:
色素体
(chromatophore)、食物泡(foodvacuola)、眼点(stigma)、伸缩泡(contractilevacuole)、线粒体(mitochondrion)、高尔基体(Golgiapparatus)等。
12.溶胶质(plasmasol)、凝胶质(plasmagel):
原生动物门肉足虫纲动物的内质可分为固态的凝胶质和液态的溶胶质。
在运动时虫体后端的凝胶质因蛋白质的收缩产生压力,使溶胶质向前流动同时伸出伪足。
溶胶质流到前方后压力减小,溶胶质又由前向后回流,再成为凝胶质。
这样凝胶质与溶胶质的不断交换形成变形运动。
13.植物性营养(holophyticnutrition):
原生动物门植鞭毛类体内含有色素体,可以利用光能将二氧化碳和水合成糖类,制成自身生长的营养物质,这种营养方式称为植物性营养。
14.动物性营养(holozoicnutrition):
原生动物通过伪足吞噬或通过胞口、胞咽将细菌、有机质颗粒等食物取食进细胞质内形成食物泡,经消化酶的作用吸收消化后的营养,不能消化的食物残渣则由胞肛排出体外,这种营养方式称为动
动物生物
物性营养。
15.腐生性营养(saprophyticnutrition):
一些寄生和自由生活的原生动物可以通过体表的渗透作用从生活的环境介质中摄取溶于水的有机物以获取自身生长的营养物质。
这种营养方式称为腐生性营养。
16.眼点:
一些鞭毛虫类身体前端会有类胡萝卜素的脂类集合成为一个红色的眼点,与鞭毛基部的副鞭毛体一起构成某些鞭毛虫的感光细胞器。
腔肠动物门
1.缘膜:
水螅纲水母的伞缘向内突起,成为一环状膜,称为缘膜。
2.隔膜:
珊瑚纲的腔肠动物体壁内胚层向消化循环腔垂直长入的突起,有的可以连接到口道,将消化循环腔分为初级隔膜、次级隔膜和三级隔膜。
3.神经细胞(nervecell):
位于皮肌细胞基部,接近中胶层,它的细胞突起彼此相连成网状,构成神经网,起传导刺激向四周扩散的作用;
4.刺细胞(cnidoblast):
腔肠动物特有的,分布于体表皮肌细胞之间,以触手上为多。
刺细胞内有刺丝囊(nematocyst),囊内有毒液和一盘旋的丝状管(刺丝):
遇到刺激,囊内刺丝翻出,注射毒液或把外物缠卷,利于防御和捕食。
5.间细胞(interstitialcell):
主要在外胚层细胞之间,是一种未分化的胚胎性细胞,可以分化为刺细胞和生殖细胞等。
6.上皮细胞(epitheliacell):
上皮基部有肌原纤维沿身体纵轴排列,它的收缩使身体和触手变短,故又称上皮肌肉细胞(epithelio-muscular
cell);
7.腺细胞(glandcell):
分布于皮肌细胞之间,能分泌粘液,使水螅便于附着或在基质上滑动;
8.感觉细胞(sensorycell):
体积小,在口和触手等处较多,它的基部与神经纤维连接;
9.内皮肌细胞:
顶端多具鞭毛(1-5根),鞭毛摆动能激动水流,同时皮肌细胞伸出伪足吞食食物;内皮肌细胞基部肌原纤维呈环状排列,收缩时使身体和触手变细;可见内皮肌细胞兼有收缩和营养功能。
10.腺细胞:
能分泌酶进入中央腔消化食物。
11.世代交替:
一些水螅型、水母型同时存在的种类:
螅期以无性繁殖(即出芽生殖)的方式产生水母型个体;水母型个体脱离母体后,又以有性生殖的方式产生水螅型个体。
12.浮浪幼虫(98)
扁形动物门
1.焰细胞:
在显微镜下观察,焰细胞实际是由2个细胞构成。
一个是带有鞭毛的帽状细胞,另一个是管状细胞。
管状细胞上有很多小孔,可以使实质中的代谢物质进入,最后经原肾管从身体背面两侧的开口排出体外。
2.无肠目(Acoela):
无消化管,只有由口通到体内的一团由内胚层形成的合胞体,行细胞内消化,无原肾管,直接发育,海产。
3.单肠目(Rhabdocoela):
有口、咽和管状或囊状不分支的肠,口位于前端。
大多数生活在海水或淡水中,少数在潮湿土壤里或营寄生生活。
4.三肠目(Tricladida):
肠分为三主干,一向前,二向后,并有侧盲突,多生活在海水或淡水中,一部分在潮湿土壤中,少数营寄生生活。
动物生物
5.多肠目(Polycladida):
口位于腹部近后端,有肌肉质咽,肠具有一条不明显的主干,两侧有许多分支,海产,有牟勒氏幼虫期。
6.中间宿主:
是指寄生虫的幼虫或无性生殖阶段所寄生的宿主。
7.终末宿主:
是指寄生虫成虫或有性生殖阶段所寄生的宿主。
8.毛蚴(miracidium):
刚从受精卵中孵出的幼虫,体表有纤毛。
前端有眼点,单细胞分泌腺体和简单的消化管。
体后部有一团胚细胞,多数自由游泳寻找第一中间宿主软
体动物。
9.胞蚴(sporocyst):
钻入螺体内的毛蚴脱去纤毛延长成囊状,体内每一胚细胞发育成一个雷蚴,或发育成子胞蚴,再由子胞蚴发育成雷蚴。
10.雷蚴(redia):
雷蚴破胞蚴壁而出,它有咽,肠和排泄管结构。
有一个产孔,体内也有一团胚细胞,胚细胞可发育为尾蚴,或先发育为子雷蚴,再由子雷蚴发育为尾蚴。
(胞蚴和雷蚴的增殖过程是出现在发育过程中尚未成熟的个体中,叫做幼体增殖。
)
11.尾蚴(cercaria):
从雷蚴产孔产出,并离开第一中间宿主。
以具有口吸盘和腹吸盘。
用尾在水中游泳寻找第二中间宿主如虾蟹鱼蛙或水生植物等。
12.囊蚴(metacercaria):
吸附在宿主身上,脱去尾,分泌圆形的囊壁。
如果囊蚴被终末宿主将它和第二中间宿主吃掉,便会在终末宿主体内发育成为成虫。
13.皮肤肌肉囊:
由外胚层形成的表皮和中胚层形成的肌肉构成的体壁称为皮肤肌肉囊。
14.神经系统:
出现原始的中枢神经系统(除原始种类):
扁形动物体前端有1对发达的脑神经节(cranialganglion),由脑神经节向后发出若干纵行神经索(neuralchord),神经索间有许多横神经相连,形成梯形神经系统(ladder-typenervessystem),支配全身。
原腔动物
1.皮肌囊:
线虫的体腔壁与无体腔动物一样具有皮肌囊的构造。
线虫体壁由角质膜、上皮和纵肌层组成,又称皮肌囊。
角质膜下为合胞体的上皮,即上皮细胞界限不清,具多核。
上皮内为中胚层形成的纵肌层,不发达,属典型的斜纹肌肉。
2.消化管:
消化管分为前肠、中肠和后肠三部分。
前肠由外胚层于口处内陷形成,内壁有角质膜,分化为口、口腔及咽。
中肠由内胚层发育形成,为消化与吸收的主要部分。
后肠为外胚层于胚胎后端处内陷形成,内壁也具有角质膜,包括短的直肠和肛门。
3.假体腔又称初生体腔:
胚胎发育中囊胚腔遗留到成体形成的――体壁中胚层与内胚层消化道之间的腔――即外胚层的表皮与中胚层形成的肌肉组成体壁,而肠壁的形成没有中胚层的参与,仍然由内胚层形成的。
4.腺型排泄器官:
腺型排泄器官属原始类型,通常由1~2个称为原肾细胞的大的腺细胞构成,原肾细胞吸收体腔液中的代谢产物排出体外。
5.管型排泄器官:
管型排泄器官是由一个原肾细胞特化形成,由纵贯侧线内的
动物生物
2条纵排泄管构成,二管间有一横管相连,略呈“H”型。
由横管处伸出一短管,其末端开口为排泄孔。
溶于体腔液中的代谢产物,通过侧线处的上皮进入排泄管。
6.神经系统:
线虫的神经系统有围绕咽部的围咽神经环。
侧神经节和腹神经节与之相连。
神经环向后伸出多条神经,均嵌在上皮中,以背神经和腹神经最发达。
7.原肾细胞renettecell:
线虫的排泄器官由1至2个称为原肾细胞的腺细胞构成,原肾细胞吸收体腔中的代谢产物排出体外,身体细胞(如原肾细胞)在线虫其细胞数目是恒定的,或者其细胞核数目恒定。
8.假体腔的意义:
动物肠道与体壁之间有了空腔,为体内器官系统的发展提供了空间;体壁具有中胚层形成的肌肉层+体腔液具有一定的流动压力――使动物的运动摆脱了单纯依赖体表纤毛的摆动,运动能力得到明显加强;体腔液使腔内物质出现了简单的流动循环,可以更有效地输送营养物质和代谢产物
环节动物
1.真体腔(coelom;truecoelom):
环节动物的体腔是位于中胚层之间的腔,其周围为中胚层所形成的体腔膜(peritoneum)所包围,它不同于线形动物的假体腔,这种体腔称为真体腔。
2.同律分节(hemonomausmetamerism):
环节动物分节比较原始,它们的身体由一个个相似的段落组成,身体内部结构也按节排列,每一段称为一个体节。
除了头部外,其他体节基本相似,这种分节称为同律分节。
而后面介绍的节肢动物和脊索动物身体不同部分的体节发生形态分化和机能分工形成体区,称为异律分节。
3.刚毛:
多数环节动物,每节都长有刚毛,运动器官远比纤毛稳固而有力。
它是由表皮细胞内陷形成的刚毛囊(setalsac)中的一个细胞分泌而成的。
4.疣足(parapodium):
多毛类环节动物体壁向外伸出的扁平的片状突起,每节一对,分为背叶与腹叶,其中有刚毛和足刺伸入以支持,主要用于游泳,作用似船桨,为动物界中最原始的附肢。
5.闭管式循环系统(closedvascularsystem):
血液自始至终在封闭的血管中流动,血管之间由毛细血管连接,而不直接流到组织间隙之间去。
6.心脏:
蚯蚓主管身体前端的几对连接背腹血管的环血管,内壁有肌肉组织,可博动,因而也叫心脏。
7.呼吸色素(respiratorypigment):
参与呼吸作用的蛋白质,能使血液呈现某种颜色,如血红蛋白、血绿蛋白、血青蛋白等。
颜色的变化常与其化学组成中含二价铜离子或二价铁离子离子有关。
8.消化系统与真体腔的关系:
环节动物的消化系统为完全消化系统,与真体腔产生密切相关,外有中胚层来源的肌肉层,消化管从此脱离了体壁的牵制,可以自行蠕动。
9.后肾管与排泄:
环节动物新陈代谢的废物可有两个来源,除了真体腔液内废物可直接进入肾口外,肾管表面密布毛细血管网,血液中废物可通过渗透作用进入肾管。
动物生物
10.生殖环带(clitellum):
寡毛纲环节动物身体前部几个体节(1~3节),体壁腺体加厚、膨胀形成的环形带,通常在性成熟时出现,其中有许多能分泌粘液的细胞,交配后粘液形成卵茧。
因此环带与生殖有关而得名。
11.口前叶(prostomium):
环节动物身体前端肉质的叶状突起;寡毛类,口前叶生活时由于体腔液压力作用可膨胀;有摄食、掘土和触觉功能;多毛类口前叶上生有眼点,口前触须等感官,与围口节合称为多毛类的头部。
12.围口节(prestomium):
环节动物的第一个体节,口即位于其腹面,围口节不具刚毛或疣足,在多毛类中常着生有围口触手,为感觉器官。
13.异律分节(heteronomousmetamerism):
部分种类出现,即前后端体节在形态结构和机能上均不相同。
异律分节为机体分部和机能分工提供了可能。
14.真体腔的意义:
由于消化道的壁具有肌肉,又有体腔――肠可自主蠕动,而不依身体的运动――大大加强了动物的消化能力;肠壁有了中胚层的参与,为肠的进一步分化提供了条件;对循环、排泄、生殖等系统的形成及功能也有很大影响。
15.闭管式循环系统的意义:
可以更有效、迅速地完成营养物质和代谢产物的输送。
16.吸盘:
蛭类体前后端各具有一吸盘,前吸盘较小,后吸盘较大,由体后7个体节愈合而成。
用作吸附在临时寄主上,或用来在固着物上面行走。
蛭类运动时常以前后吸盘交替使用,类似尺蠖的运动,称蛭形运动。
软体动物门
1.外套腔(mantlecavity)外套膜与内脏团、鳃、足之间的空隙。
2.齿舌:
为软体动物特有的器官,位于口腔底部,由有规律排列的角质齿片组合而成。
摄食时由于肌肉的伸缩,角质齿片作前后活动而将食物锉碎舐食。
节肢动物门
1.开放式循环系统的意义:
由于血液在血管和血腔中运行,血压较低,可避免因断肢等的大量失血。
2.马氏管(malpighantubules):
由内胚层或外胚层形成的单层细胞的盲管,游离在动物的血腔中,位于中肠和后肠的交界处。
蛛形纲、多足纲和昆虫纲的排泄器官都是马氏管,收集血淋巴中的代谢产物。
代谢产物主要是尿酸。
3.无变态(ametabola):
表现在原始的无翅类群,幼虫和成虫相比除身体较小和性器官未成熟外,没有更多的差别,且发育为成虫后仍蜕皮生长,如衣鱼等。
4.不完全变态(heterometabola):
(1)渐变态(gradualmetamorphosis):
卵孵化后,幼虫形态与成虫差别不大,生活环境和习性相同,只是翅和生殖腺未发育,称为若虫(nymph),例如蝗虫。
(2)半变态(hemimetabola):
卵孵化后,幼虫的形态、习性、生活环境与成虫均不同,称为稚虫(naiad),例如蜻蜓。
5.完全变态(holometabola):
卵孵化后,幼虫的形态与成虫很不同,生活史
动物生物
中在变为成虫之前,有一个不取食不活动的蛹期。
例如家蚕、金龟子、蜜蜂等88%的昆虫都属于完全变态。
6.气管(tracheae):
实际上也是体壁的内陷,气管内壁有角质层成螺旋状排列,以保持管壁的形态。
有的种类气孔可以开合,减少体内水分的散失。
棘皮动物门
1.原口动物:
在胚胎发育中的原肠胚期,其原口(胚孔)最后形成动物的口。
2.后口动物:
在胚胎发育中的原肠胚期,其原口(胚孔)形成动物的肛门,而在与原口相对的一端,另形成一新口称为后口。
3.水管系:
是次生体腔的一部分特化形成的一系列管道组成,有开口与外界相通,海水可进入循环。
水管系包括:
环管.辐管和侧管。
接合生殖:
由两个没有鞭毛能变形的配子结合的生殖方式,生活史中有的有世代交替。
索性神经系统:
环节动物的腹神经索的两条纵行腹神经在每体节内形成神经节,整体为索状,为索式神经。
辐射对称:
是指大多数腔肠动物,通过其体内的中央轴(从口面到反口面)有许多个切面可以把身体分为2个相等的部分。
外骨骼:
是指节肢动物为制止体内水分大量蒸发而全身包被的一种十分发达,坚硬厚实的角质膜,包括上角质膜,外角质膜核内角质膜三层。
后肾管:
是指一部分无脊椎动物(如蚯蚓)所具有的较发达的多细胞的排泄器官。
典型的后肾管包括开口于体腔的肾口;具纤毛和无纤毛的细肾管;缺纤毛的及通到体外的肾孔等部分。
贝壳:
是指由软体动物背侧皮肤褶襞向下延伸成为的外套膜分泌形成的石灰质贝壳,覆盖在身体最外面。
胎生:
是指胎儿借助一种特殊结构――胎盘和母体联系并取得营养,在母体内完成胚胎发育过程――妊娠而成为幼儿时始产出。
3.试比较初生腔和次生腔的结构特征,并举例说明。
答:
○1初生体腔的外围是体壁,体壁包括角质膜、上皮和纵肌层三部分,角质膜和上皮是由外胚层发育而来的,而纵肌层是由中胚层发育而来。
体腔内是由中胚层发育而来的肠壁。
如线虫的原体腔,是由胚胎时期的囊胚腔发展形成。
原体腔只有体壁中胚层,且不具体腔膜,无脏壁中胚层。
○2次生体腔比初生体腔进化,具有初生体腔没有的体腔膜和脏体腔膜等结构。
如蚯蚓的次生体腔被隔膜依体节分隔成多数体腔室,各室有小孔相通。
每一体腔室由左右二体腔囊发育形成。
体腔囊外侧形成壁体腔膜,内侧除中间大部分形成脏体腔膜外,背侧与腹侧则形成背肠系膜和腹肠系膜。
蚯蚓的腹肠系膜退化,只有肠和腹血管之间的部分存在;背肠系膜则已经消失。
前后体腔囊间的部分,紧贴在一起,形成了隔膜。
4.举例说明完全变态和不完全变态。
答:
○1毛虫从蝶卵孵出后,便不停进食和蜕皮,藉此成长。
毛虫发育至成熟阶段便会化蛹,蛹内形成的成虫最后羽化而出。
像蝶、蛾等昆虫在个体发育过程中,经过卵、幼虫、蛹、成虫四个时期,幼虫的形态构造和生活习性跟成虫显著不同
动物生物
的发育方式为完全变态。
○2蟋蟀的发育过程要经过卵、若虫、成虫三个时期,若虫并不会经历成蛹的阶段而直接化成成虫。
像这种在个体发育过程中,只经过卵、若虫和成虫三个时期,不经过蛹期的发育方式为不完全变态。
5.原生动物门的主要特征是什么?
如何理解它是动物界最原始最低等的一类动物。
答:
主要特征是:
○1最原始最低等的单细胞动物
○2原生动物体形微小,形态多样,分布广泛
○3具多种营养方式
○4具一系列生理特征
○5一定条件下可形成包囊
理解:
原生生物是一类目前已知的最原始的真核生物,包括一切单细胞和多细胞群体的生物。
其中既有明显属于动物界的草履虫、变形虫等,又有明显属于植物界的衣藻、团藻等绿藻,还有介于动物界、植物界和真菌界之间的眼虫、粘菌等。
总之原生动物是自然界中最原始、最简单的动物类群。
【细胞器】(organelle)也称“细胞器官”、“胞器”或“类器官”。
细胞质内具有一定结构和功能的小单位。
持严格观点的学者认为:
只有外围具两套膜而又有一定的遗传独立性的构造(如线粒体、叶绿体)才算真正的细胞器。
持宽松观点的学者认为:
微管、微丝、核糖体、鞭毛、纤毛和伪足等也是胞器。
【细胞周期】细胞从一次分裂结束到下次分裂结束之间的期限。
【个体发育】指多细胞生物体从受精卵或非需精卵开始,经过细胞分裂、组织分化、器官形成,直到性成熟的过程。
包括胚胎发育和胚后发育。
(注:
也有学者认为直到衰老死亡。
)
【系统发育】亦称“种系发生”。
指整个生物界或某个生物类群的产生和发展的历史。
【重演律】亦称“生物发生律”,由德国学者海克尔和弥勒提出,认为生物在个体发育过程中,按顺序重现其祖先系统发育的主要阶段。
脱离母体后能直接或间接发育成新个体的单细胞或少数细胞的繁殖体。
【孢子生殖】亦称孢子增殖。
指部分原生动物的合子经过分裂依次形成多个孢子母细胞、多个孢子、多个子孢子的繁殖方式。
如鸡球虫和疟原虫。
【配子生殖】通过雌、雄两性生殖细胞(即配子)融合后产生新个体的生殖方式。
两性配子的形状和大小相同的称为同配;两性配子的形状和大小不同的称为异配;两性配子的形状、大小和功能都完全不同的称为卵配。
卵配中大配子称为“卵(子)”,小配子称为“精子”。
动物生物
【孤雌生殖】也称“单性生殖”。
卵子不经受精而发育成子代的生殖方式。
如未受精的蜂卵可发育成雄蜂,夏季未受精的蚜虫卵可发育成雌性蚜虫。
【幼体生殖】亦称“童体生殖”。
幼年期动物体的卵细胞不经受精而发育成胚胎后产出体外。
如中华分支睾吸虫、三代虫。
【接合生殖】纤毛虫类的一种有性生殖方式,两个纤毛虫粘接后互相交换较小的雄性核与对方的雌性核融合成结合核,两虫体分开后各自以分裂法进行增殖。
【裂体生殖】
(1)由亲体分裂成数部分,各部分分别发育成子体。
(2)孢子虫的营养体细胞核重复分裂,形成一胞多核的裂殖体,然后细胞质也分裂到各个核的周围,并分别产生细胞膜,形成众多裂殖子,裂殖体破裂后放出裂殖子,这一过程也称为“复分裂”或“复裂”。
如疟原虫。
由受精卵或非需精卵发育而成的初期发育体。
简称为“胚”。
【桑椹胚】多细胞动物胚胎发育的一个早期阶段,受精卵或非需精卵经过多次分裂后,胚胎形如桑椹,细胞尚无明显分化。
多细胞动物胚胎发育的一个早期阶段,呈囊状(含一层细胞)或盘状(含一小片细胞)。
囊胚期细胞群所包围的或与卵黄合围的腔称为囊胚腔。
亦称“胚叶”,指构成多细胞动物早期胚胎的细胞层。
各胚层将来分化为一定的组织和器官。
刺胞动物有外胚层和内胚层(中间的称中胶层)。
较高等的动物则有外胚层、内胚层和中胚层。
亦称“原口”或“原肠口”。
多细胞动物发育早期,部分细胞迁入内部形成内胚层的原肠(此时的发育体称为原肠胚),原肠腔通往胚胎外的出入口称为胚孔。
胚孔将来发育成口(如刺胞动物、扁形、原腔动物、环节动物、软体动物和节肢动物动物),或发育成肛门(如毛颚动物、须腕动物、棘皮动物和脊索动物)。
【神经管】脊索动物发育至原肠胚后,外胚层背部出现一条前宽后窄的板状结构,称为神经板;神经板两侧隆起神经褶后称为神经沟;再逐渐向中央线合拢形成管状的构造,称为神经管。
神经管为中枢神经系统的基础,以后发育成脊椎动物的脑和脊髓。
【原口动物】由原口发育为成体的口的三胚层动物。
包括扁形动物、纽形动物、原腔动物、环节动物、软体动物和节肢动物都。
【后口动物】原口[胚孔]发育为成体的肛门,而在原口以外的部位发育为成体口的三胚层动物。
棘皮动物、半索动物学和脊索动物都属后口动物。
动物生物
胚胎发育由卵内的卵黄、卵白等提供营养,卵在亲体外孵化。
如鸟类。
【卵胎生】卵的胚胎发育和孵化都在母体中完成。
胚胎发育所需的营养物质主要来自卵黄。
如蝮蛇。
受精卵在母体内发育为胎儿才产出,胚胎借胎盘从母体获得营养,这种生殖方式称为胎生。
大多数哺乳动物为胎生。
【幼虫/幼体】对有蛹期的昆虫而言,指由卵孵化出来后到蛹期之前的发育体。
对其它无蛹期的多细胞动物而言,是指在具有成体特征之前能营独立生活的发育体。
例如白枝海绵的两囊幼虫。
某些寄生蠕虫的幼虫称为“蚴”,如胞蚴、雷蚴。
幼虫和幼体在中文用法上有区别也有混用,如在脊椎动物中用幼体,在昆虫中用幼虫,在棘皮动物中两者都有人用。
而在英语两者都是larva.拉丁词larva意为令人恐惧的面具、邪恶的精灵、鬼怪、恶魔。
指某些动物的形态构造在胚后发育中发生显著的变化。
【不完全变态】也叫直接变态。
指卵孵化后,幼体无需经过蛹的阶段就可变为成体。
昆虫的不完全变态可分为半变态、渐变态和过渐变态三种。
【渐变态】幼虫与成虫在形态、生境和习性上较相似,但性器官尚未成熟,翅未长成,这种变态称为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动物 生物学 名词解释