Chapter05IM10thEd1Finance.docx
- 文档编号:8521515
- 上传时间:2023-01-31
- 格式:DOCX
- 页数:56
- 大小:316.38KB
Chapter05IM10thEd1Finance.docx
《Chapter05IM10thEd1Finance.docx》由会员分享,可在线阅读,更多相关《Chapter05IM10thEd1Finance.docx(56页珍藏版)》请在冰豆网上搜索。
Chapter05IM10thEd1Finance
CHAPTER5
TheTimeValueofMoney
CHAPTERORIENTATION
Inthischaptertheconceptofatimevalueofmoneyisintroduced,thatis,adollartodayisworthmorethanadollarreceivedayearfromnow.Thusifwearetologicallycompareprojectsandfinancialstrategies,wemusteithermovealldollarflowsbacktothepresentorouttosomecommonfuturedate.
CHAPTEROUTLINE
I.Compoundinterestresultswhentheinterestpaidontheinvestmentduringthefirstperiodisaddedtotheprincipalandduringthesecondperiodtheinterestisearnedontheoriginalprincipalplustheinterestearnedduringthefirstperiod.
A.Mathematically,thefuturevalueofaninvestmentifcompoundedannuallyatarateofifornyearswillbe
FVn=PV(l+i)n
wheren=thenumberofyearsduringwhichthecompoundingoccurs
i=theannualinterest(ordiscount)rate
PV=thepresentvalueororiginalamountinvestedatthebeginningofthefirstperiod
FVn=thefuturevalueoftheinvestmentattheendofnyears
1.Thefuturevalueofaninvestmentcanbeincreasedbyeitherincreasingthenumberofyearsweletitcompoundorbycompoundingitatahigherrate.
2.Ifthecompoundedperiodislessthanoneyear,thefuturevalueofaninvestmentcanbedeterminedasfollows:
FVn=PV
mn
wherem=thenumberoftimescompoundingoccursduringtheyear
II.Determiningthepresentvalue,thatis,thevalueintoday'sdollarsofasumofmoneytobereceivedinthefuture,involvesnothingotherthaninversecompounding.Thedifferencesinthesetechniquescomeaboutmerelyfromtheinvestor'spointofview.
A.Mathematically,thepresentvalueofasumofmoneytobereceivedinthefuturecanbedeterminedwiththefollowingequation:
PV=FVn
where:
n=thenumberofyearsuntilpaymentwillbereceived,
i=theinterestrateordiscountrate
PV=thepresentvalueofthefuturesumofmoney
FVn=thefuturevalueoftheinvestmentattheendofnyears
1.Thepresentvalueofafuturesumofmoneyisinverselyrelatedtoboththenumberofyearsuntilthepaymentwillbereceivedandtheinterestrate.
III.Anannuityisaseriesofequaldollarpaymentsforaspecifiednumberofyears.Becauseannuitiesoccurfrequentlyinfinance,forexample,bondinterestpayments,wetreatthemspecially.
A.Acompoundannuityinvolvesdepositingorinvestinganequalsumofmoneyattheendofeachyearforacertainnumberofyearsandallowingittogrow.
1.Thiscanbedonebyusingourcompoundingequation,andcompoundingeachoneoftheindividualdepositstothefutureorbyusingthefollowingcompoundannuityequation:
FVn=PMT
where:
PMT=theannuityvaluedepositedattheendofeachyear
i=theannualinterest(ordiscount)rate
n=thenumberofyearsforwhichtheannuitywilllast
FVn=thefuturevalueoftheannuityattheendofthenthyear
B.Pensionfunds,insuranceobligations,andinterestreceivedfrombondsallinvolveannuities.Tocomparethesefinancialinstrumentswewouldliketoknowthepresentvalueofeachoftheseannuities.
1.Thiscanbedonebyusingourpresentvalueequationanddiscountingeachoneoftheindividualcashflowsbacktothepresentorbyusingthefollowingpresentvalueofanannuityequation:
PV=PMT
where:
PMT=theannuitydepositedorwithdrawnattheendofeachyear
i=theannualinterestordiscountrate
PV=thepresentvalueofthefutureannuity
n=thenumberofyearsforwhichtheannuitywilllast
C.ThisprocedureofsolvingforPMT,theannuityvaluewheni,n,andPVareknown,isalsotheprocedureusedtodeterminewhatpaymentsareassociatedwithpayingoffaloaninequalinstallments.Loanspaidoffinthisway,inperiodicpayments,arecalledamortizedloans.HereagainweknowthreeofthefourvaluesintheannuityequationandaresolvingforavalueofPMT,theannualannuity.
IV.Annuitiesduearereallyjustordinaryannuitieswherealltheannuitypaymentshavebeenshiftedforwardbyoneyear.Compoundingthemanddeterminingtheirpresentvalueisactuallyquitesimple.Becauseanannuity,duemerelyshiftsthepaymentsfromtheendoftheyeartothebeginningoftheyear,wenowcompoundthecashflowsforoneadditionalyear.Therefore,thecompoundsumofanannuitydueis
FVn(annuitydue)=PMT(FVIFAi,n)(1+i)
A.Likewise,withthepresentvalueofanannuitydue,wesimplyreceiveeachcashflowoneyearearlier–thatis,wereceiveitatthebeginningofeachyearratherthanattheendofeachyear.Thusthepresentvalueofanannuitydueis
PV(annuitydue)=PMT(PVIFAi,n)(1+i)
V.Aperpetuityisanannuitythatcontinuesforever,thatiseveryyearfromnowonthisinvestmentpaysthesamedollaramount.
A.Anexampleofaperpetuityispreferredstockwhichyieldsaconstantdollardividendinfinitely.
B.Thefollowingequationcanbeusedtodeterminethepresentvalueofaperpetuity:
PV=
where:
PV=thepresentvalueoftheperpetuity
pp=theconstantdollaramountprovidedbytheperpetuity
i=theannualinterestordiscountrate
VI.Toaidinthecalculationsofpresentandfuturevalues,tablesareprovidedatthebackofFinancialManagement(FM).
A.ToaidindeterminingthevalueofFVninthecompoundingformula
FVn=PV(1+i)n=PV(FVIFi,n)
tableshavebeencompiledforvaluesofFVIFi,nor(i+1)ninAppendixB,"CompoundSumof$1,"inFM.
B.Toaidinthecomputationofpresentvalues
PV=FVn
=FVn(PVIFi,n)
tableshavebeencompiledforvaluesof
orPVIFi,n
andappearinAppendixCinthebackofFM.
C.Becauseofthetime-consumingnatureofcompoundinganannuity,
FVn=PMT
=PMT(FVIFAi,n)
TablesareprovidedinAppendixDofFMfor
orFVIFAi,n
forvariouscombinationsofnandi.
D.Tosimplifytheprocessofdeterminingthepresentvalueofanannuity
PV=PMT
=PMT(PVIFAi,n)
tablesareprovidedinAppendixEofFMforvariouscombinationsofnandiforthevalue
orPVIFAi,n
V.SpreadsheetsandtheTimeValueofMoney.
A.Whilethereareseveralcompetingspreadsheets,themostpopularoneisMicrosoftExcel.Justaswiththekeystrokecalculationsonafinancialcalculator,aspreadsheetcanmakeeasyworkofmostcommonfinancialcalculations.ListedbelowaresomeofthemostcommonfunctionsusedwithExcelwhenmovingmoneythroughtime:
Calculation:
Formula:
PresentValue=PV(rate,numberofperiods,payment,futurevalue,type)
FutureValue=FV(rate,numberofperiods,payment,presentvalue,type)
Payment=PMT(rate,numberofperiods,presentvalue,futurevalue,type)
NumberofPeriods=NPER(rate,payment,presentvalue,futurevalue,type)
InterestRate=RATE(numberofperiods,payment,presentvalue,futurevalue,type,guess)
where:
rate=i,theinterestrateordiscountrate
numberofperiods=n,thenumberofyearsorperiods
payment=PMT,theannuitypaymentdepositedorreceivedattheendofeachperiod
futurevalue=FV,thefuturevalueoftheinvestmentattheendofnperiodsoryears
presentvalue=PV,thepresentvalueofthefuturesumofmoney
type=whenthepaymentismade,(0ifomitted)
0=atendofperiod
1=atbeginningofperiod
guess=astartingpointwhencalculatingtheinterestrate,ifomitted,thecalculationsbeginwithavalueof0.1or10%
ANSWERSTO
END-OF-CHAPTERQUESTIONS
5-1.Theconceptoftimevalueofmoneyisrecognitionthatadollarreceivedtodayisworthmorethanadollarreceivedayearfromnoworatanyfuturedate.Itexistsbecausethereareinvestmentopportunitiesonmoney,thatis,wecanplaceourdollarreceivedtodayinasavingsaccountandoneyearfromnowhavemorethanadollar.
5-2.Compoundinganddiscountingareinverseprocessesofeachother.Incompounding,moneyismovedforwardintime,whileindiscountingmoneyismovedbackintime.Thiscanbeshownmathematicallyinthe
compoundingequation:
FVn=PV(1+i)n
Wecanderivethediscountingequationbymultiplyingeachsideof
thisequationby
andweget:
PV=FVn
5-3.Weknowthat
FVn=PV(1+i)n
Thus,anincreaseiniwillincreaseFVnandadecreaseinnwill
decreaseFVn.
5-4.BankCwhichcompoundsdailypaysthehighestinterest.Thisoccursbecause,whileallbankspaythesameinterest,5percent,bankCcompoundsthe5percentdaily.Dailycompoundingallowsinteresttobeearnedmorefrequentlythantheothercompoundingperiods.
5-5.Thevaluesinthepresentvalueofanannuitytable(Table5-8)areactuallyderivedfromthevaluesinthepresentvaluetable(Table5-4).Thiscanbeseen,byexaminingthevaluesrepresentedineachtable.Thepresentvaluetablegivesvaluesof
forvariousvaluesofiandn,whilethepresentvalueofanannuitytablegivesvaluesof
forvariousvaluesofiandn.Thusthevalueinthepresentvalueofannuitytableforann-yearannuityforanydiscountrateiismerelythesumofthefirstnvaluesinthepresentvaluetable.PVIFA10%,10yrs=6.145.
PVIF10%,n=6.144=0.909+0.826+0.751+0.683+0.621+0.564+0.513+0.467+0.424+0.386
5-6.Anannuityisaseriesofequaldollarpaymentsforaspecifiednumberofyears.Examplesofannuitiesincludemortgagepayments,interestpaymentsonbonds,fixedleasepayments,andanyfixedcontractualpayment.Aperpetuityisanannuitythatcontinuesforever,thatis,everyyearfromnowonthisinvestmentpaysthesamedollaramount.Thedifferencebetweenanannuityandaperpetuityisthataperpetuityhasnoterminationdatewhereasanannuitydoes.
SOLUTIONSTO
END-OF-CHAPTERPROBLEMS
SolutionstoProblemSetA
5-1A.(a)FVn=PV(1+i)n
FV10=$5,000(1+0.10)10
FV10=$5,000(2.594)
FV10=$12,970
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Chapter05IM10thEd1Finance