USP291116 洁净室和其它受控环境的微生物评估 中文稿.docx
- 文档编号:8509461
- 上传时间:2023-01-31
- 格式:DOCX
- 页数:16
- 大小:36.80KB
USP291116 洁净室和其它受控环境的微生物评估 中文稿.docx
《USP291116 洁净室和其它受控环境的微生物评估 中文稿.docx》由会员分享,可在线阅读,更多相关《USP291116 洁净室和其它受控环境的微生物评估 中文稿.docx(16页珍藏版)》请在冰豆网上搜索。
USP291116洁净室和其它受控环境的微生物评估中文稿
<1116>洁净室和其他受控环境的微生物学评估
本章信息旨在综述与散装原料药、剂型以及某些医疗用具无菌操作相关的各种问题;并对控制环境进行制定、保持和控制其微生物学特性。
本章包括的讨论有关以下方面:
(1)基于颗粒计数限制上的洁净室分级;
(2)控制环境的微生物学评估程序;(3)人员培训;(4)设计和实施微生物学评估程序中的关键因素;(5)取样策略的制定;(6)建立微生物警告和行动标准;(7)应用于微生物取样的方法学和仪器操作;(8)培养基和稀释剂;(9)微生物隔离群的鉴别;(10)经培养基填充的操作评估;以及(11)词汇表。
本章以外的讨论是有执照药房制备家用无菌产品应用控制环境的问题,其包含在药用配方—无菌制备(PharmaceuticalCompounding—SterilePreparations)á797ñ中。
对于无菌操作的控制环境中微生物状况的控制和评估存在方法选择性。
本章中的数字评估并非有意代表绝对的评估或规范,而仅是一种信息上的表示。
考虑到微生物取样设备和方法的多样性,不能说达到这些值就能保证微生物控制的需求标准,或者与本章这些值有偏差、高于本章的值就认为是失去控制。
微生物取样和分析应用不当,可能会引起显著的差异和不慎污染的潜在性。
本章标明的取样培养基、设备和方法,不是特定的规范而只是一种信息参考。
通过无菌操作可产生高比率的无菌产品。
因为无菌操作依赖的是流程中微生物的排除和阻止包装过程中微生物进入敞口容器,制造环境中的微生物负担和产品的生物负担对于保证这些产品的无菌水平来说,是相关的重要因素。
洁净室分级的确立
洁净室和控制环境的设计和构建,在联邦标准209E中被提及。
此空气洁净标准通过空气播散颗粒绝对浓度定义。
其中包括用于控制环境空气级别分配和监测空气播散颗粒的方法。
这一联邦文件仅适用于控制环境内的空气播散颗粒,且并非有意的强调颗粒的活性与非活性属性特征。
制药工业中的洁净室和其他控制环境的联邦标准209E已经被洁净室制造商所采用,以提供这些设施的组装、试车和维护的规范。
然而,制药工业中的有效数据并不能给非活性颗粒数量和活性微生物浓度之间的关系提供科学的一致性。
电子工业的非活性颗粒数量的关键程度使得应用联邦标准209E成为必需,虽然制药工业在与联邦标准中特定的总颗粒相比较而言,更关心的是活性颗粒(即微生物)。
制药行业中对注射制剂中的总颗粒数有明确规定。
(见注射品中的颗粒物质(ParticulateMatterinInjections)á788ñ)。
洁净室的颗粒数越少,空气播散微生物的可能性越小。
这一理论是经认可的,且能够为制药生产商和洁净室及受控环境的建造者提供功能设施建造方面的工程学标准。
应用在制药工业的连邦标准209E,是以所有颗粒大小的限定为依据的,即,大小等于或大于0.5µm的。
表1描述了联邦标准209E适用于制药工业的空气播散颗粒洁净级别。
制药工业适用M3.5以及更高级别。
M1级别和M3级别相关于电子工业,表1所示仅为出于比较目的。
通常认为,假设不存在气流、温度和湿度的改变,则使用中的洁净室或其他控制环境中存在的颗粒越少,操作条件下的微生物计数将会越少。
洁净室被维持在以动态的(运作的)数据为根据的操作控制状态下。
表1.空气播散颗粒洁净级别*
级别名
等于或大于0.5µm的颗粒
SI
U.S.习惯
(m3)
(ft3)
M1
—
10.0
0.283
M1.5
1
35.3
1.00
M2
—
100
2.8
M2.5
10
353
10.0
M3
—
1,000
28.3
M3.5
100
3,530
100
M4
—
10,000
283
M4.5
1,000
35,300
1,000
M5
—
100,000
2,830
M5.5
10,000
353,000
10,000
M6
1,000,000
28,300
M6.5
100,000
3,530,000
100,000
M7
—
10,000,000
283,000
* 来自U.S.联邦标准209E,1992年9月11日—“洁净室及洁净区内空气播散颗粒洁净级别。
”
控制环境中微生物学评估程序的重要性
监测控制环境中总颗粒计数,甚至应用连续电子仪器计数,仍不能提供关于环境中微生物含量的信息。
颗粒计数器的基本限制在于它们测量颗粒为0.5µm或者更大的。
而空气播散微生物并不是自由浮动的或是单细胞的,它们经常联合成10到20µm的颗粒。
控制环境中的颗粒计数和微生物计数是随着取样位置和取样期间采取的活动而改变的。
监测环境中的非活性颗粒和微生物是一项重要的控制措施,因为它们对达到颗粒物质(ParticulateMatter)和注射(Injections)á1ñ条件下无菌(Sterility)的产品要求来说,都是重要的。
控制环境的微生物监测程序应当对人员的以及由人员执行的可能对控制环境造成生物负担影响的清洁卫生处理的实行以及洁净效应予以评估。
不管系统多么复杂,微生物监测将不再、也不需要对这些控制环境中存在的所有微生物污染进行鉴别和定量。
然而,常规的微生物监测应该提供用以确定控制环境是在适当的控制状态下运作的有效信息。
具备资格人员对环境微生物监测和数据分析,应该在容许洁净室和其他受控环境保持在控制状态下进行。
考虑到有意义数据的收集,则应当在环境正常运行过程中取样。
微生物取样应当发生在原料在场、加工处理在进行中且操作人员在岗时。
适当的时候,洁净室和一些其他控制环境的微生物监测应当包括室内空气以及进入关键区域、表面、设备、清洁卫生处理容器、地板、墙壁和人员着装(如工作服和手套)的压缩空气的微生物含量定量。
微生物监测程序的目的对环境生物负载来说具有代表性的评估。
当数据被收集和分析时,受过训练的人员应对任何趋势进行评估。
尽管以推荐和特定的频率为根据来考查环境的结果是重要的,可是考查扩展时期的结果对于确认趋势是否为目前的也同样的关键。
趋势可以通过构建包括警告和行动标准的统计检验图表而形象化。
控制环境的微生物控制可以以这些趋势数据为根据,进行部分的评估。
应当做定期报告或总结借以警示责任管理人员。
当受控环境中特定微生物水平超标时,应当进行文件性的综述和调查。
在调查的细节上可能会有所不同,这要根据室内制造产品的类型和加工过程的不同来确定。
调查应当包括区域维护文件考查;清洁卫生处理文件;固有物理的或操作的参数,如环境温度和相对湿度的改变;以及相关人员的培训状况。
调查之后,采取的行动可能会包括加强人员培训以强调微生物控制的重要性;增加频率添加取样;添加清洁卫生处理;添加产品测试;鉴定微生物污染及其可能来源;如果必要的话,需对现有标准化操作规程进行再评价并使其重新生效。
根据调查综述和结果测试,微生物水平超标的显著性和在那种条件下操作或产品处理的可接受性可能是需要查明的。
任何对于行动过程的调查和理论都应当通过文件证明,且应作为整个质量管理系统的一部分。
控制环境,如洁净区或洁净室,是依照相关洁净室运行标准证明确定的。
评估参数包括过滤的完整性、空气流速、通风模式、换气以及压力差别。
这些参数能够影响洁净室运行中的微生物生物负载。
洁净室的设计、构建以及运行存在多样性,这使得对这些参数的泛化变得困难。
Ljungquist和Reinmuller1发展了通过增加邻近关键工作区域和设备的周围粒子浓度对系统进行颗粒激发测试的方法。
首先,烟的产生使得洁净室或一个控制环境的各处空气流动成为可见。
旋涡或紊流区段的存在能够完全可见,且气流模式可以微调到消除或最小化不良影响的状态。
然后,颗粒物质就产生于关键区和无菌区的附近了。
此评估是在模拟生产条件下进行的,但是设备和人员均在场。
在微生物监测程序生效之前,完成适当的测试和优化洁净室或控制环境的物理特征是必要的。
确保适当的控制环境并依照其工程规范运作,将会更高效的确保控制环境中对于无菌操作而言能有适当的生物负载。
在洁净室或受控环境的日常确认过程中,应当重复进行这些测试;在进行如人员流动、加工过程、操作过程、原料流程、空气处理系统或设备布局等显著性的操作改变时,也应当重复进行这些测试。
人员的培训
无菌处理产品需要生产商密切关注人员管理的细节,保持严格的纪律以及对其进行严格的监督,以确保维持适当的环境质量水平,并确保最终产品的无菌性。
对控制环境中工作人员进行培训是个关键。
这种培训对微生物监测程序的责任人员同样也是重要的,因为微生物取样过程如不注意操作,很容易引起洁净工作区域污染的发生。
在高度自动化的操作中,监测人员可能是加工处理区域内与关键区带有最直接联系的人员。
在加工处理区域内工作前和工作后,都应当对人员进行监督检查。
微生物取样是导致微生物污染的潜在因素,如果取样方法不当,会导致微生物污染的发生。
正式有效的人员培训计划会使这种危险性因素减到最小。
这一正式有效培训应当是针对所有进入受控环境的人员的,并形成文件性规定。
对于设备的管理必须保证洁净室和控制环境内所有的相关操作人员能够很好的精通相关微生物学原理。
培训应当包括无菌处理基本原则以及对产品潜在污染源处理过程的关联训练。
此培训应当包括微生物基本原则、微生物生理学、消毒和卫生、培养基选择和制备、分类学以及灭菌等指导,这些对涉及无菌操作的人员本身都是必需的。
涉及微生物鉴别的人员,还需要进行实验室所需方法的专业培训。
此外,还必须给相关人员提供所收集环境数据的管理方面的附加培训。
对应用标准化操作规程的认识和理解是很关键的,尤其是那些与当环境条件这样要求时采用的纠偏措施相关的标准操作规程。
了解关于生产质量管理规范(GMPs)中每一个体责任以及顺应性调整政策,同指导调研和分析数据的培训一样,都应该作为整体培训计划的一部分来实行。
控制环境中微生物污染的主要污染源是工作人员。
微生物可以通过人体传播而引起污染的发生,尤其是那些处于活动传染期个体。
因此控制环境只能准许健康的个体进入。
由这些事实来看,良好的个人卫生以及对个人进入控制环境所用的无菌衣处理过程细节上的注意都显得十分重要。
这些人员一旦穿戴整齐,包括完全的面部覆盖处理,就必须在整个期间内小心的保持他们手套和制服的完整性。
由于无菌处理过程中产品的主要污染威胁来自操作人员,使得控制与这些人员相关联的微生物污染成为环境控制程序中一个重要的因素。
包括无菌操作在内,对控制环境的工作人员进行彻底的培训是重要的,但是也不能去过分的强调。
因为环境监测程序仅通过自身是无法检测无菌操作的所有对环境微生物品质可能的妥协事件的。
因此,周期性的培养基填充或过程模拟研究,对于使方法重新生效以确保适当的操纵管理和保持有效培训来说是必需的。
微生物学环境控制程序设计和实施中的关键因素
一项环境控制程序应当具有实时检测微生物状态中逆变的能力,这样才能保证采取有意义并有效的改善行动。
厂商有责任制定、启动、执行这样的环境控制程序并使其成文件性规定。
尽管对于环境控制程序的一般性建议将被讨论,但对于特定设备和特殊条件,仍急需制定这样的程序。
一般的微生物菌株生长培养基,如大豆酪蛋白消化培养基,在大多数情况是适用的。
如果这些环境中使用或应用了消毒剂或抗生素,这种培养基可以通过补充添加剂来克服消毒剂或抗生素的效应或使其效应最小化。
酵母菌和霉菌的检测和定量应当给以考虑。
一般的真菌培养基,如萨布罗氏培养基、改良萨布罗氏培养基或抑制霉菌琼脂,都是可以接受的。
其它已经确证的促进真菌生长的培养基,如大豆-酪蛋白消化琼脂,也可以应用。
一般而言,对于专性厌氧菌,不进行常规的检测。
然而,应当有适当的条件或研究做保证,比如无菌试验装置中这些微生物的频繁检测证明的鉴别等。
应当对选择性培养基检测和定量这些厌氧或微需氧微生物的能力进行评估。
一旦选定适当的培养基,就要进行时间和孵育温度的选择。
典型的孵育温度为22.5±2.5
和32.5±2.5
,孵育时间分别为72和48小时。
为环境程序所制备的生长培养基的灭菌过程应当是有效的,且应当对其进行无菌检测和生长促进检测,详述可见无菌检查(SterilityTests)á71ñ。
另外,对于生长促进检测,从控制环境中分离得到具代表性的微生物群或从ATCC菌株制备这些分离菌株也可能用来检测培养基。
培养基在接种量小于100个菌落形成单位(cfu)时,必须能保证支持菌种生长。
适当的环境控制程序应当包括确认和评估取样点以及确认环境的微生物取样方法。
鉴别被分离菌株的方法应当用微生物指示剂(见微生物限度检查(MicrobialLimitTests)á61ñ)验证。
取样策略和位置的确立
在洁净室或其它控制环境启动或试车初始阶段,就应当确定空气和表面取样的特定位置。
应当考虑到与产品的接近度、空气和表面是否会与产品或者容器闭包系统的敏感表面有接触的可能性。
这样的区域应当作为关键区域,需要进行比非产品接触区更多的监测。
在安泰乐装瓶操作中,典型的操作区域包括容器闭包配备、容器开启路径以及其它工作人员常规处理的无机物体(如污染物)。
取样频率要依据特定位点的重要性和对于产品无菌操作后的后继处理来定。
表2显示的为与被取样的控制环境中区域重要性相关的降序排列的建议取样频率。
表2.基于控制环境重要性的建议取样频率
样地面积
取样频率
洁净级100或更好的设计室
每个操作交接
刚靠近洁净级100的支持区(如10,000洁净级)
每个操作交接
其它支持区(100,000洁净级)
每周两次
潜在的产品/容器接触区
每周两次
其它无菌操作区但非产品接触区支持区(100,000洁净级或较低)
每周一次
由于操作过程中手工介入的增加以及人员接触产品潜在性的增加,使得环境监测程序的相对重要性增加。
环境监测对于无菌操作生产的产品来说,远比生产后进行终端灭菌的产品要重要得多。
确定和定量对后继灭菌处理具有抗性的微生物,远比在制造环境周围进行微生物环境监测要重要得多。
如果终端灭菌循环不是基于过度杀伤循环,而是基于生物负担优先灭菌,那么生物负担的评估就是关键性的。
取样策略应当是动态性的,即监测频率和取样策略位置的动态性。
其动态调整是以趋势特征为根据的。
根据这一趋势可以进行适当的增加或减少取样。
建立控制系统的微生物警告和行动标准
统计过程控制的概念和原理,对于建立警告和行动标准以及趋势应答是有用的。
微生物环境监测的警告标准,即微生物水平呈现源自标准操作条件的潜在变化。
超过警告标准并不一定需要最后的改善行动,但是它至少应该提示进行继而的书面调查,其内容包括取样策略的修正。
微生物环境监测的行动标准,是微生物水平超过此标准时,如需要则应立即采取改善行动。
行动标准通常是根据特定控制环境常规运转期间所得历史信息来确定的。
对于新设备,这些标准通常是根据从相似设备和操作过程所得的先前经验来确定的,并且至少应依据几个星期的微生物环境水平数据的评估来建立基线。
在确定频率的情况下,为了确保适当性,对这些标准通常要进行再考查。
当历史数据表明条件改善时,对这些标准可以进行再考查并做能反映实际条件的改变。
如果有趋势表明环境质量恶化,则需要注意检测直接原因并建立改善行动计划以使条件回到原期望值范围。
无论如何,应实行调查,且对产品造成影响的潜在性因素做出评估。
控制环境微生物的考察及行动标准
洁净室及其它控制环境的分级依据联邦标准209E,此标准是基于对这些环境总颗粒计数来确定的。
药用和医疗用具企业通常采用分级为100级、10,000级和100,000级,特别的针对设备的建设规范。
虽然在209E控制环境级别和微生物水平之间没有建立直接的联系,可制药工业采用与这些级别相关的微生物标准已经有许多年了。
并且这些标准当前已用于GMP认证的评估。
2在控制环境中应用当前的技术来达到这些标准是很容易的。
有相关报道显示,由于取样系统的不同、培养基的差异以及孵育温度的不同,可导致这些测量值的不同。
应当认识到,虽然没有绝对完美的检测系统,但它的存在确实能够帮助我们检测环境质量的变化,进而了解其趋势。
表3,4,和5中所示的值代表个别测验的结果,仅作为指导性建议。
每一厂家的数据必须作为整个监测程序的一部分来进行评估。
表3.以菌落形成单位(cfu)表示的控制环境中空气洁净指导方针
(用Slit-to-Agar取样器或同等物)
级别*
每立方米空气的cfu**
每立方英尺空气的cfu
SI
U.S.习惯
M3.5
100
少于3
少于0.1
M5.5
10,000
少于20
少于0.5
M6.5
100,000
少于100
少于2.5
* 定义于联邦标准209E,1992年9月.
** 应该取足够体积的空气样品,以检测超特定限度的偏差。
表4.以cfu表示的控制环境中仪器和设备表面洁净指导方针
级别
每接触板的cfu*
SI
U.S.习惯
M3.5
100
3(包括底面)
M5.5
10,000
5
10(底面)
* 接触板区域从24到30cm2不同。
当取样过程用到冲洗时,区域面积应大于或等于24cm2,但是不能超过30cm2。
表5.以cfu表示的控制环境中工作人员活动表面洁净指导方针。
级别
每接触板的cfu*
SI
U.S.习惯
手套
工作人员衣着
&装束
M3.5
100
3
5
M5.5
10,000
10
20
* 见表4下注(*)。
活性空气播散微生物定量的方法学和仪器操作
控制环境中空气播散微生物能够对这些区域内半成品或最终产品的微生物质量起到影响。
这一观点已被科学家们所普遍接受。
另外人们也普遍接受这种观点,即空气播散微生物的估测也会受到执行这些分析所用仪器和相关操作的影响。
因此,当方法和仪器有所变化时,应当确定其所获结果的一般等价转换。
我们期待将来的技术进步可以带来革新,以提供比现有可用方法更高的精密度和敏感度,并且可用确定微生物数量检测中的变化绝对值。
目前,美国制药和医用器材工业最常用的取样器为嵌入式和离心取样器。
以下所列取样器均可通过商业购买得到,仅作为信息提供。
对特定取样器的选择、购买和充分利用则由使用者负责。
Slit-to-Agar空气取样器(STA)—这一取样器是依据多种控制环境表3的微生物指导方针的一种仪器。
其动力来源为附属可控真空装置。
空气通过一个标准化的缝隙进入缝隙下面设置的缓慢回转式有盖培养皿,皿内含有营养琼脂。
空气中的颗粒物质具有足够的质量撞击琼脂表面,使得活菌能够在其表面生长。
通常用吸入稀疏空气的方法来减小空气层流区域的干扰。
滤网取样器(SieveImpactor)—此装置包括一个容器,可以调节含营养琼脂的有盖培养皿。
装置的盖子有穿孔,穿孔的大小是预先设计好的。
真空泵通过盖子的穿孔抽取已知体积的空气,空气中含有微生物的颗粒就与有盖培养皿内的琼脂培养基碰撞。
一些取样器具有一系列串联级有孔容器,其穿孔按大小降序排列。
这些装置能够依照尺寸范围分级测量含活性微生物的颗粒样品,因为颗粒是经过有大小尺寸的穿孔而到达琼脂平板表面的。
离心取样器(CentrifugalSampler)—此装置包括一个推进器或涡轮,以推动已知体积的空气进入装置内部,然后向外推进空气使其与独立设置在一个柔韧塑料基板上的营养琼脂条碰撞。
无菌微生物房(SterilizableMicrobiologicalAtrium)—此装置是单孔滤网打入器的一种变型。
装置的盖子含有均匀分布的约0.25英寸的小口。
装置的基底适合于一个含营养琼脂的有盖培养皿。
由真空泵来控制通过装置的空气运动,并可以应用多重装置控制中心和远距离取样探针。
表面空气系统取样器(SurfaceAirSystemSampler)—这是一种整合装置,包括一个适合琼脂接触板的进入部分。
紧接着接触板的后面,是一个传动器和涡轮,可以推动空气穿过装置中琼脂接触板的有孔盖子,以及穿过传动器远端。
也可以有多重包埋组合。
凝胶薄膜过滤取样器(GelatinFilterSampler)—这一装置包括一个带有延长管的真空泵,延长管的终端是一个滤纸夹,此末端可以被放置于遥远的关键性空间。
滤纸含有无规则明胶纤维,对空气播散微生物起到防卫作用。
经过特定的暴露时间后,滤纸被无菌的移开,并用适当的稀释剂溶解,然后涂于适当的琼脂培养基上进行微生物含量的评价。
沉降皿(SettlingPlates)—作为一种简单和廉价的方法,仍被广泛用于延长暴露时间的环境品质评估。
但是开放性琼脂填充培养皿或沉降皿的方法,不能用于对关键环境进行微生物污染的品质评估。
机械空气取样器的一个主要的缺陷是对被取样空气样本量的限制。
如果一个控制环境的空气微生物水平期望值为不高于3cfu每立方米,那么就需要对几个立方米的空气进行测试,进而得到准确度和精确度合乎给定标准的结果。
通常这是不切实际的。
为了显示环境中存在的微生物数量不随时间而增加,可能就需要通过延长取样时间来确定取样时间是否是一个限制性因素。
具代表性的有,slit-to-agar取样器具有每分钟80升的取样能力(对于表面空气系统,此能力有时可能会更高)。
如果检测1立方米的空气,接着将需要暴露时间为15分钟。
用这过多的15分钟取样时间,对于获得代表性的环境样品,可能是必需的。
尽管报导有一些取样器,其取样体积比率能达到很高,可是这些情形中存在的对任何关键区域气流模式的潜在破坏性或是能够增加污染可能性的紊流形成,都应该给予考虑。
对于离心空气取样器,许多前期的研究表明,所取样品显示了对较大颗粒的选择性。
这种类型取样器的应用,可能会由于其固有的选择性,引起比其它类型空气取样器更高的空气播散计数。
当选择离心取样器时,应当考虑到取样器对取样位置的控制区域气流线性的影响。
如果忽略所用取样器的类型,则远距离探针的应用需要检测其额外的配管对活性空气播散计数没有不良影响。
如有影响,则应设法消除;如果无法消除,则应当在报告结果时引进校正系数。
测量控制环境内活性微生物污染表面取样的仪器和方法学
微生物环境控制程序的另一组成部分是这些环境中仪器、设备以及工作人员着装的表面取样。
在制药工业中,表面取样方法和程序的标准化程度还不及空气取样程序的标准化程度广泛。
3为使对关键性操作的影响最小化,表面取样应该在该操作的结尾进行。
表面取样可以通过应用接触平板或者水刷方法来完成。
表面监测通常在于产品有关联的区域或与这些区域相邻近的区域表面进行。
装有营养琼脂的接触平板通常应用于规则的或平坦的表面取样,并且在给定温度下直接孵育适当时间以对活菌进行定量检测。
对于真菌、孢子等的特殊定量检测应当用专门的琼脂。
水刷方法可以用于不规则表面的取样,尤其是仪器表面。
在规则表面,水刷法可作为接触平板方法的补充。
取样后,将水刷置于适当的稀释剂冲之中,然后在适当的营养琼脂上或其中接种适当量以进行微生物计数评估。
将要被刷的区域用适当大小的无菌模板确定。
通常其大小在24到30cm2范围内。
对报告的每接触板或每刷进行微生物学评估。
微生物取样或定量用培养基及稀释剂
控制环境中用于微生物取样或定量的培养基类型是液体还是固体,取决于所用仪器和操作的过程。
当需要固体培养基时,一般选用通用的大豆-酪蛋白消化琼脂培养基。
其它固体和液体培养基见下表。
液体培养基*
固体培养基*
胰蛋白胨盐
大豆-酪蛋白消化琼脂
胨水
营养琼脂
缓冲盐水
胰蛋白胨葡萄糖浸液琼脂
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- USP291116 洁净室和其它受控环境的微生物评估 中文稿 洁净室 其它 受控 环境 微生物 评估 文稿