高考物理经典题型解题思路辅导第4讲带电粒子在场中的运动.docx
- 文档编号:845791
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:15
- 大小:172.79KB
高考物理经典题型解题思路辅导第4讲带电粒子在场中的运动.docx
《高考物理经典题型解题思路辅导第4讲带电粒子在场中的运动.docx》由会员分享,可在线阅读,更多相关《高考物理经典题型解题思路辅导第4讲带电粒子在场中的运动.docx(15页珍藏版)》请在冰豆网上搜索。
高考物理经典题型解题思路辅导第4讲带电粒子在场中的运动
第四讲带电粒子在场中的运动
思想方法提炼
带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题
电场力、磁场力、重力的性质和特点:
匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化.
一、安培力
1.安培力:
通电导线在磁场中受到的作用力叫安培力.
【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.
2.安培力的计算公式:
F=BILsin;通电导线与磁场方向垂直时,即=900,此时安培力有最大值;通电导线与磁场方向平行时,即=00,此时安培力有最小值,Fmin=0N;0°<<90°时,安培力F介于0和最大值之间.
3.安培力公式的适用条件;
①一般只适用于匀强磁场;②导线垂直于磁场;
③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端;
如图所示,
几种有效长度;
④安培力的作用点为磁场中通电导体的几何中心;
⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.
【说明】安培力的计算只限于导线与B垂直和平行的两种情况.
二、左手定则
1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定.
2.用左手定则判定安培力方向的方法:
伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.
3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直.
4.安培力F、磁感应强度B、电流I三者的关系
①已知I、B的方向,可惟一确定F的方向;
②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;
③已知F、I的方向时,磁感应强度B的方向不能惟一确定.
三、洛伦兹力:
磁场对运动电荷的作用力.
1.洛伦兹力的公式:
F=qvBsin;
2.当带电粒子的运动方向与磁场方向互相平行时,F=0;
3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB;
4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0;
四、洛伦兹力的方向
1.运动电荷在磁场中受力方向可用左手定则来判定;
2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f总是垂直于B和v所在的平面.
3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.
4.安培力的本质是磁场对运动电荷的作用力的宏观表现.
五、带电粒子在匀强磁场中的运动
1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:
一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.从运动形式可分为:
匀速直线运动和变加速曲线运动.
2.如果不计重力的带电粒子的运动方向与磁场方向平行时,带电粒子做匀速直线运动,是因为带电粒子在磁场中不受洛伦兹力的作用.
3.如果不计重力的带电粒子的运动方向与磁场方向垂直时,带电粒子做匀速圆周运动,是因为带电粒子在磁场中受到的洛伦兹力始终与带电粒子的运动方向垂直,只改变其运动方向,不改变其速度大小.
4.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/Bq;其运动周期T=2m/Bq(与速度大小无关).
5.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:
带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动)
6.带电粒子在匀强磁场中做不完整圆周运动的解题思路:
(1)用几何知识确定圆心并求半径.
因为F方向指向圆心,根据F一定垂直v,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系.
(2)确定轨迹所对的圆心角,求运动时间.
先利用圆心角与弦切角的关系,或者是四边形内角和等于360°(或2)计算出圆心角的大小,再由公式t=T/3600(或T/2)可求出运动时间.
六、带电粒子在复合场中运动的基本分析
1.这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛伦兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.
2.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.
3.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.
4.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.
5.当带电粒子所受的合外力的大小、方向均是不断变化的,则粒子将做变加速运动,这类问题一般只能用能量关系处理.
七、电场力和洛伦兹力的比较
1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.
2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsina,与电荷运动的速度大小和方向均有关.
3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.
4.电场既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小.
5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.
6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.
八、对于重力的考虑
重力考虑与否分三种情况.
(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.
(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)是直接看不出是否要考虑重力,但在进行受力分析与运动分析时,要由分析结果,先进行定性确定再是否要考虑重力.
九、动力学理论:
(1)粒子所受的合力和初速度决定粒子的运动轨迹及运动性质;
(2)匀变速直线运动公式、运动的合成和分解、匀速圆周运动的运动学公式;
(3)牛顿运动定律、动量定理和动量守恒定律;
(4)动能定理、能量守恒定律.
十、在生产、生活、科研中的应用:
如显像管、回旋加速器、速度选择器、正负电子对撞机、质谱仪、电磁流量计、磁流体发电机、霍尔效应等等.
正因为这类问题涉及知识面大、能力要求高,而成为近几年高考的热点问题,题型有选择、填空、作图等,更多的是作为压轴题的说理、计算题.分析此类问题的一般方法为:
首先从粒子的开始运动状态受力分析着手,由合力和初速度判断粒子的运动轨迹和运动性质,注意速度和洛伦兹力相互影响这一特点,将整个运动过程和各个阶段都分析清楚,然后再结合题设条件,边界条件等,选取粒子的运动过程,选用有关动力学理论公式求解
常见的问题类型及解法.
【例1】如图,在某个空间内有一个水平方向的匀强电场,电场强度,又有一个与电场垂直的水平方向匀强磁场,磁感强度B=10T。
现有一个质量m=2×10-6kg、带电量q=2×10-6C的微粒,在这个电场和磁场叠加的空间作匀速直线运动。
假如在这个微粒经过某条电场线时突然撤去磁场,那么,当它再次经过同一条电场线时,微粒在电场线方向上移过了多大距离。
(g取10m/S2)
【解析】题中带电微粒在叠加场中作匀速直线运动,意味着微粒受到的重力、电场力和磁场力平衡。
进一步的分析可知:
洛仑兹力f与重力、电场力的合力F等值反向,微粒运动速度V与f垂直,如图2。
当撤去磁场后,带电微粒作匀变速曲线运动,可将此曲线运动分解为水平方向和竖直方向两个匀变速直线运动来处理,如图3。
由图2可知:
又:
解之得:
由图3可知,微粒回到同一条电场线的时间
则微粒在电场线方向移过距离
【解题回顾】本题的关键有两点:
(1)根据平衡条件结合各力特点画出三力关系;
(2)将匀变速曲线运动分解
【例2】如图所示,质量为m,电量为q的带正电
的微粒以初速度v0垂直射入相互垂直的匀强电场和
匀强磁场中,刚好沿直线射出该场区,若同一微粒
以初速度v0/2垂直射入该场区,则微粒沿图示的
曲线从P点以2v0速度离开场区,求微粒在场区中
的横向(垂直于v0方向)位移,已知磁场的磁感应强度大小为B.
【解析】速度为v0时粒子受重力、电场力和磁场力,三力在竖直方向平衡;速度为v0/2时,磁场力变小,三力不平衡,微粒应做变加速度的曲线运动.
当微粒的速度为v0时,做水平匀速直线运动,有:
qE=mg+qv0B①;
当微粒的速度为v0/2时,它做曲线运动,但洛伦兹力对运动的电荷不做功,只有重力和电场力做功,设微粒横向位移为s,由动能定理
(qE-mg)s=1/2m(2v0)2-1/2m(v0/2)2②.
将①式代入②式得qv0BS=15mv02/8,
所以s=15mv0/(8qB).
【解题回顾】由于洛伦兹力的特点往往会使微粒的运动很复杂,但这类只涉及初、末状态参量而不涉及中间状态性质的问题常用动量、能量观点分析求解
【例3】在xOy平面内有许多电子(质量为m,电量为e)从
坐标原点O不断地以相同大小的速度v0沿不同的方向射入
第一象限,如图所示,现加一个垂直于xOy平面的磁感应强度
为B的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴
向x轴正方向运动,试求出符合条件的磁场的最小面积.
【分析】电子在磁场中运动轨迹是圆弧,且不同方向射出
的电子的圆形轨迹的半径相同(r=mv0/Be).假如磁场区域
足够大,画出所有可能的轨迹如图所示,
其中圆O1和圆O2为从圆点射出,经第一象限的所有圆中的最低和最高位置的两个圆,若要使电子飞出磁场平行于x轴,这些圆的最高点应是区域的下边界,
可由几何知识证明,此下边界为一段圆弧将这些圆心连线(图中虚线O1O2)向上平移一段长度为r=mv0/eB的距离即图中的弧ocb就是这些圆的最高点的连线,应是磁场区域的下边界.;圆O2的y轴正方向的半个圆应是磁场的上边界,两边界之间图形的面积即为所求
图中的阴影区域面积,即为磁场区域面积
S=
【解题回顾】数学方法与物理知识相结合是解决物理
问题的一种有效途径.本题还可以用下述方法求出下边界.
设P(x,y)为磁场下边界上的一点,经过该点的电子初速度
与x轴夹角为,则由图可知:
x=rsin,y=r-rcos
得:
x2+(y-r)2=r2所以磁场区域的下边界也是半径为r,
圆心为(0,r)的圆弧
【例4】如图所示,在x轴上方有垂直于xy平面向
里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴
负方向的匀强电场,场强为E.一质量为m,电量为-q的
粒子从坐标原点O沿着y轴正方向射出射出之后,
第三次到达x轴时,它与点O的距离为L.求此粒子
射出的速度v和在此过程中运动的总路程s(重力不计).
【解析】由粒子在磁场中和电场中受力情况与粒子的速度可以判断粒子从O点开始在磁场中匀速率运动半个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 物理 经典 题型 解题 思路 辅导 带电 粒子 在场 中的 运动