人教版八年级下册数学教案.docx
- 文档编号:8377676
- 上传时间:2023-01-30
- 格式:DOCX
- 页数:6
- 大小:19.16KB
人教版八年级下册数学教案.docx
《人教版八年级下册数学教案.docx》由会员分享,可在线阅读,更多相关《人教版八年级下册数学教案.docx(6页珍藏版)》请在冰豆网上搜索。
人教版八年级下册数学教案
人教版八年级下册数学教案
(最新版)
编制人:
__________________
审核人:
__________________
审批人:
__________________
编制学校:
__________________
编制时间:
____年____月____日
序言
下载提示:
该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典教案,如幼儿教案、小学教案、初中教案、高中教案、大学教案、其他教案等等,想了解不同教案格式和写法,敬请关注!
Downloadtips:
Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!
Inaddition,thisshopprovidesyouwithvarioustypesofclassiclessonplans,suchaspreschoollessonplans,elementaryschoollessonplans,juniorhighschoollessonplans,highschoollessonplans,universitylessonplans,otherlessonplans,etc.Ifyouwanttolearnabouttheformatandwritingofdifferentlessonplans,staytuned!
人教版八年级下册数学教案
八年级数学老师要找准游戏与教学内容的结合开展游戏,使学生在玩中学习,玩中思考,玩中创新。
你有在数学课后写八年级数学教案?
来学习它的写法吧。
你是否在找正准备撰写“人教版八年级下册数学教案”,下面本店铺收集了相关的素材,供大家写文参考!
人教版八年级下册数学教案1
一、学习目标:
1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重 点:
平方差公式的推导和应用
难 点:
理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999
(2)998×1002
导入新课:
计算下列多项式的积.
(1)(x+1)(x-1)
(2)(m+2)(m-2)
(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)
结论:
两个数的和与这两个数的差的积,等于这两个数的平方差.
即:
(a+b)(a-b)=a2-b2
四、精讲精练
例1:
运用平方差公式计算:
(1)(3x+2)(3x-2)
(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)
例2:
计算:
(1)102×98
(2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a)
(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)
五、小结:
(a+b)(a-b)=a2-b2
第三十五学时:
4.2.2.完全平方公式
(一)
一、学习目标:
1.完全平方公式的推导及其应用.
2.完全平方公式的几何解释.
二、重点难点:
重 点:
完全平方公式的推导过程、结构特点、几何解释,灵活应用
难 点:
理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?
多多少?
为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;
(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2
(2)(y-)2(3)(-a-b)2(4)(b-a)2
例2、用完全平方公式计算:
(1)1022
(2)992
随堂练习
第三十六学时:
14.2.2完全平方公式
(二)
一、学习目标:
1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点:
理解添括号法则,进一步熟悉乘法公式的合理利用
难 点:
在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2)
(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+()
(2)a-b+c=a-()
(3)a-b-c=a-()(4)a+b+c=a-()
2.判断下列运算是否正确.
(1)2a-b-=2a-(b-)
(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:
添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:
运用乘法公式计算
(1)(x+2y-3)(x-2y+3)
(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
随堂练习:
教科书练习
五、小结:
去括号法则
六、作业:
教科书习题
人教版八年级下册数学教案2
一、学习目标:
让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点:
能观察出多项式的公因式,并根据分配律把公因式提出来
难 点:
让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc=m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6;
(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);
(2)6(m-n)3-12(n-m)2.
(3)a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72
(2)a2b-5ab
(3)4m3-6m2(4)a2b-5ab+9b
(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
注意:
(a-b)2=(b-a)2
六、作业1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20XX+(-2)20XX
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
人教版八年级下册数学教案3
一、学习目标:
1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点:
掌握运用平方差公式分解因式.
难 点:
将单项式化为平方形式,再用平方差公式分解因式;
学习方法:
归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?
当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
1.请看乘法公式
(a+b)(a-b)=a2-b2
(1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b)
(2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第
(2)个等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9m2-4n2
=(3m)2-(2n)2
=(3m+2n)(3m-2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2;
(2)9a2-b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2;
(2)2x3-8x.
补充例题:
判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)•(a2-1).
五、课堂练习教科书练习
六、作业1、教科书习题
2、分解因式:
x4-16x3-4x4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
人教版八年级下册数学教案4
为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:
汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1)你能用含v的代数式来表示t吗?
(2)时间t是速度v的函数吗?
设计意图:
与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。
从而自然地引入“反比例函数”概念。
为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
一般式变形:
(其中k均不为0)
通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:
1、为何值时,为反比例函数?
2是的反比例函数,是的正比例函数,则与成什么关系?
关于课堂教学:
由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。
我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。
一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:
1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
数学教案终于写完毕了,希望能够帮助到大家,谢谢!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学教案