初三数学中考模拟试题带解析.docx
- 文档编号:8375898
- 上传时间:2023-01-30
- 格式:DOCX
- 页数:24
- 大小:481.72KB
初三数学中考模拟试题带解析.docx
《初三数学中考模拟试题带解析.docx》由会员分享,可在线阅读,更多相关《初三数学中考模拟试题带解析.docx(24页珍藏版)》请在冰豆网上搜索。
初三数学中考模拟试题带解析
2020年九年级中考模拟考试
数学试题
一、选择题(本大题共6小题,每小题3分,共18分)
1.2018的倒数是()
A.﹣2018B.
C.
D.2018
【分析】根据倒数的意义,可得答案.
解:
2018的倒数是
,故选:
C.
【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
2.人类生存的环境越来越受到人们的关注,某研究机构对空气进行了测量研究,发现在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克.数据
0.001293可用科学记数法表示为()
A.0.1293×10﹣2B.1.293×10﹣3
C.12.93×10﹣4D.0.1293×10﹣3
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解:
数据0.001293可用科学记数法表示为1.293×10﹣3.故选:
B.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|
<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3.计算正确的是()
A.(﹣5)0=0B.x3+x4=x7
C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a
【分析】根据整式乘法运算法则以及实数运算法则即可求出答案.解:
(A)原式=1,故A错误;
(B)x3与x4不是同类项,不能进行合并,故B错误;
(C)原式=a4b6,故C错误;故选:
D.
【点评】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
4.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()
A.
B.
C.
D.
【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.
解:
A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;
B、∠1和∠2的对顶角是同位角,且相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,且相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等,两直线不平行,此选项错误.
故选:
B.
【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.
5.如图是一个全封闭的物体,则它的俯视图是()
A.
B.
C.
D.
【分析】根据俯视图是从物体上面看,从而得到出物体的形状.
解:
从上面观察可得到:
.故选:
D.
【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看不见的部分用虚线表示.
6.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到
点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()
A.
B.
C.
D.
【分析】分析动点P在每段路径上的运动的过程中的面积增大、减小或不变的趋势即可.
解:
由点P的运动可知,当点P在GF、ED边上时△ABP的面积不变,则对应图象为平行于t轴的线段,则B、C错误.点P在AD、EF、GB上运动时,
△ABP的面积分别处于增、减变化过程.故D排除故选:
A.
【点评】本题为动点问题的函数图象判断题,考查学生对于动点运动过程中函数图象的变化趋势的判断.解答关键是注意动点到达临界点前后的图象变化.
二、填空题(本大题共6小题,每小题3分,共18分)
7.若x的立方根是﹣2,则x=﹣8.
【分析】根据立方根的定义即可求出答案.解:
由题意可知:
x=(﹣2)3=﹣8
故答案为:
﹣8
【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.
8.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定
跳远练习,并记录下其中7天的最好成绩(单位:
m)分别为:
2.21,2.12,
2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是2.40,
2.43.
【分析】将已知数据已经由小到大排列,所以可以直接利用中位数和众数的定义求出结果.
解:
∵把7天的成绩从小到大排列为:
2.12,2.21,2.39,2.40,2.43,2.43,2.43.
∴它们的中位数为2.40,众数为2.43.故答案为:
45,45.
故答案为2.40,2.43.
【点评】考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数
9.如图,⊙O的直径CD垂直于弦AB,∠CAB=67.5°,则∠AOB=90度.
【分析】根据垂径定理得出
=
,根据∠CAB=67.5°求出
和
的度数都是135°,求出
的度数,即可得出答案.
解:
∵⊙O的直径CD垂直于弦AB,
∴
=
,
∵∠CAB=67.5°,
∴
和
的度数都是2×67.5°=135°,
∴
的度数是360°﹣135°﹣135°=90°,
∴∠AOB=90°,故答案为:
90.
【点评】本题考查了垂径定理和圆周角定理,能求各段弧的度数是解此题的关键.
10.已知a、b是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b的值是3.
【分析】根据一元二次方程的解及根与系数的关系,可得出a2﹣2a=1、a+b=2,将其代入a2﹣a+b中即可求出结论.
解:
∵a、b是方程x2﹣2x﹣1=0的两个根,
∴a2﹣2a=1,a+b=2,
∴a2﹣a+b=a2﹣2a+(a+b)=1+2=3.故答案为:
3.
【点评】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣
、两根之积等于
是解题的关键.
11.如图,点A是反比例函数y=﹣
(x<0)图象上的点,分别过点A向横轴、
纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为4﹣π.
【分析】由题意可以假设A(﹣m,m),则﹣m2=﹣4,求出点A坐标即可解决问题;
解:
由题意可以假设A(﹣m,m),则﹣m2=﹣4,
∴m=≠±2,
∴m=2,
∴S阴=S正方形﹣S圆=4﹣π,故答案为4﹣π.
【点评】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
12.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,
点A、B、C的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E是BC的中点,点P为线段AD上的动点,若△BEP是以BE为腰的等腰三角形,则点P的坐标为(1,4)或(6,4)或(0,4).
【分析】分两种情形分别讨论求解即可;解:
如图,作EH⊥AD于H.
由题意BE=5,OA=4,OE=3,
当EP=EB=5时,可得P″(0,4),P′(6,4),(HA=HP′=3),当BP=BE=5时,P(1,4),
综上所述,满足条件的点P坐标为(1,4)或(0,4)或(6,4).
【点评】本题考查平行四边形的性质、坐标与图形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
三、解答题(本大题共5小题,每小题6分,共30分)
13.(6分)
(1)计算:
﹣14﹣2×(﹣3)2+÷(﹣
)
(2)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、
N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.
【分析】
(1)原式利用乘方的意义,立方根定义,乘除法则,以及加减法则计算即可求出值;
(2)由折叠的性质得到一对角相等,根据已知角的关系求出所求即可.解:
(1)原式=﹣1﹣18+9=﹣10;
(2)由折叠得:
∠EFM=∠EFC,
∵∠EFM=2∠BFM,
∴设∠EFM=∠EFC=x,则有∠BFM=
x,
∵∠MFB+∠MFE+∠EFC=180°,
∴x+x+
x=180°,
解得:
x=72°,则∠EFC=72°.
【点评】此题考查了实数的性质,以及平行线的性质,熟练掌握运算法则是解本题的关键.
14.(6分)先化简,再求值:
÷(1﹣
),其中x=+1.
【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
解:
原式=
÷
=
•
=
,
当x=
+1时,
原式=
=
=1+.
【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
15.(6分)如图,AD是⊙O的直径,点O是圆心,C、F是AD上的两点,OC
=OF,B、E是⊙O上的两点,且
=
,求证:
BC∥EF.
【分析】由△BAC≌△EDF(SAS),推出∠ACB=∠DFE,推出∠BCF=∠EFC,可得BC∥EF.
证明:
∵
=
,AD是直径,
∴AB=DE,
=
,
∴∠A=∠D,
∵OC=OF,OA=OD,
∴AC=DF,
∴△BAC≌△EDF(SAS),
∴∠ACB=∠DFE,
∴∠BCF=∠EFC,
∴BC∥EF.
【点评】本题考查圆周角定理,全等三角形的判定和性质,平行线的判定等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
16.(6分)请你仅用无刻度的直尺在下面的图中作出△ABC的边AB上的高CD.
(1)如图①,以等边三角形ABC的边AB为直径的圆,与另两边BC、AC分别交于点E、F.
(2)如图②,以钝角三角形ABC的一短边AB为直径的圆,与最长的边AC相交于点E.
【分析】
(1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;
(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG
于点D,据此可得.
解:
(1)如图所示,CD即为所求;
(2)如图,CD即为所求.
【点评】本题主要考查作图﹣基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.
17.(6分)已知某初级中学九
(1)班共有40名同学,其中有22名男生,18名女生.
(1)若随机选一名同学,求选到男生的概率.
(2)学校因组织考试,将小明、小林随机编入A、B、C三个考场,请你用画树状图法或列表法求两人编入同一个考场的概率.
【分析】
(1)根据概率公式用男生人数除以总人数即可得.
(2)根据题意先画出树状图,得出所有等可能的情况数和两人编入同一个考场的可能情况数,再根据概率公式即可得出答案.
解:
(1)∵全班共有40名同学,其中男生有22人,
∴随机选一名同学,选到男生的概率为
=
;
(2)根据题意画图如下:
由以上树状图可知,共有9种等可能的情况,其中两人编入同一个考场的可能情况有AA,BB,CC三种;
所以两人编入同一个考场的概率为
=
.
【点评】本题考查了列表法与树状图法:
利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
四、解答题(本大题共3小题,每小题8分,共24分)
18.(8分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九
(1)班全体同学捐献图书情况的统计图(每人都有捐书).
请你根据以上统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图.
(3)九
(1)班全体同学所捐图书是6本的人数在扇形统计图中所对应扇形的圆心角为多少度?
(4)请你估计全校2000名学生所捐图书的数量.
【分析】
(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
(2)根据条形统计图求出捐4本的人数为,再画出图形即可;
(3)用360°乘以所捐图书是6本的人数所占比例可得;
(4)先求出九
(1)班所捐图书的平均数,再乘以全校总人数2000即可.
解:
(1)∵捐2本的人数是15人,占30%,
∴该班学生人数为15÷30%=50人;
(2)根据条形统计图可得:
捐4本的人数为:
50﹣(10+15+7+5)=13;
补图如下;
(3)九
(1)班全体同学所捐图书是6本的人数在扇形统计图中所对应扇形的圆
心角为360°×
=360°.
(4)∵九
(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷
50=
,
∴全校2000名学生共捐2000×
=6280(本),
答:
全校2000名学生共捐6280册书.
【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
19.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.
(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.
(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:
cos75°≈
0.2588,sin75°≈0.9659,tan75°≈3.732,
≈1.732,
≈1.414)
【分析】
(1)直接利用锐角三角函数关系得出cos∠FHE=
=
,进而得出答案;
(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
解:
(1)由题意可得:
cos∠FHE=
=
,
则∠FHE=60°;
(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=
,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=
,
∴sin60°=
=
,
∴FG≈2.17(m),
∴FM=FG+GM≈4.4(米),
答:
篮板顶端F到地面的距离是4.4米.
【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.
20.(8分)我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线投放“微型”公交车.该公司计划购买10台“微型”公交车,现有A、
B两种型号,已知购买一台A型车比购买一台B型车多20万元,购买2台A
型车比购买3台B型车少60万元.
(1)问购买一台A型车和一台B型车分别需要多少万元?
(2)经了解,每台A型车每年节省2.4万元,每台B型车每年节省2万元,若购买这批公交车每年至少节省22.4万,则购买这批公交车至少需要多少万元?
【分析】
(1)根据题意可以列出相应的方程组,从而可以解答本题;
(2)根据题意可以得到y与x的函数关系式,然后求出x的取值范围,即可解答本题.
解:
(1)设购买一台A型车和一台B型车分别需要a万元、b万元,
,得
,
答:
购买一台A型车和一台B型车分别需要120万元、100万元;
(2)设A型车购买x台,则B型车购买(10﹣x)台,需要y元,
y=120x+100(10﹣x)=20x+1000,
∵2.4x+2(10﹣x)≥22.4,
∴x≥6,
∴当x=6时,y取得最小值,此时y=1120,答:
购买这批公交车至少需要1120万元.
【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
五、解答题(本大题共2小题,每小题9分,共18分)
21.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y
=
相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C,与x
轴交于点D.
(1)求直线AB的表达式.
(2)求AC:
CB的值.
(3)
已知点E(3,2),点F(2,0),请你直接判断四边形BDEF的形状,不用说明理由.
【分析】
(1)先根据反比例函数图象上点的坐标特征求出m、n的值,从而得到
A、B点的坐标,然后利用待定系数法求直线AB的解析式;
(2)作AM⊥y轴于M,BN⊥y轴于N,如图,证明△AMC∽△BNC,然后利用
相似比求
的值;
(3)先利用直线AB的解析式确定D(﹣2,0),则可判断D点和F点,B点和
E点关于原点对称,所以OD=OF,OB=OE,然后根据平行四边形的判定方法可判断四边形BDEF为平行四边形.
解:
(1)把A(m,6)、B(﹣3,n)分别代入y=
得6m=6,﹣3n=6,
解得m=1,n=﹣2,
∴A(1,6),B(﹣3,﹣2),
把A(1,6),B(﹣3,﹣2)代入y=kx+b得
,解得
,
∴直线AB的解析式为y=2x+4;
(2)作AM⊥y轴于M,BN⊥y轴于N,如图,
∵AM∥BN,
∴△AMC∽△BNC,
∴
=
=
;
(3)当y=0时,2x+4=0,解得x=﹣2,则D(﹣2,0),
∵F(2,0),
∴OD=OF,
∵B(﹣3,﹣2),E(3,2),
∴B点和E点关于原点对称,
∴OB=OE,
∴四边形BDEF为平行四边形.
【点评】本题考查了反比例函数与一次函数的交点问题:
求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式和平行四边形的判定.
22.(9分)如图,一次函数y=﹣x﹣2的图象与二次函数y=ax2+bx﹣4的图象交于x轴上一点A,与y轴交于点B,在x轴上有一动点C.已知二次函数y
=ax2+bx﹣4的图象与y轴交于点D,对称轴为直线x=n(n<0),n是方程
2x2﹣3x﹣2=0的一个根,连接AD.
(1)求二次函数的解析式.
(2)当S△ACB=3S△ADB时,求点C的坐标.
(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与
△ADB相似?
若存在,试求出点C的坐标;若不存在,请说明理由.
【分析】
(1)由一次函数的解析式求得A(﹣2,0),通过解方程2x2﹣3x﹣2=0
求得抛物线对称轴方程,将点A的坐标代入二次函数解析式,结合抛物线对称轴公式,联立方程组,求得b、c的值;
(2)由三角形的面积公式求得AC的长度,继而求得点C的坐标;
(3)需要分类讨论:
①AC与BD是对应边时,△ADB∽△BCA,由相似三角形对应边成比例求得OC的长度,从而求得点C的坐标;
②当AC与AB是对应边时,△ADB∽△CBA,由相似三角形对应边成比例求得
OC的长度,从而求得点C的坐标.
解:
(1)在y=﹣x﹣2中,令y=0,则x=﹣2
∴A(﹣2,0).
由2x2﹣3x﹣2=0,得x1=﹣
,x2=2,
∴
解得
,
∴二次函数y=ax2+bx﹣4的对称轴为直线x=﹣
,
,
∴二次函数的解析式为:
y=2x2+2x﹣4;
(2)∵S△ADB=
BD•OA=2,
∴S△ACB=3S△ADB=6.
∵点C在x轴上,
∴S△ACB=
AC•OB=
×2AC=6,
∴AC=6.
∵点A的坐标为(﹣2,0),
∴当S△ACB=3S△ADB时,点C的坐标为(4,0)或(﹣8,0);
(3)存在.
理由:
令x=0,一次函数与y轴的交点为点B(0,﹣2),
∴AB=
=2
,∠OAB=∠OBA=45°.
∵在△ABD中,∠BAD、∠ADB都不等于45°,∠ABD=180°﹣45°=135°,
∴点C在点A的左边.
①AC与BD是对应边时,∵△ADB∽△BCA,
∴
=
=1,
∴AC=BD=2,
∴OC=OA+AC=2+2=4,
∴点C的坐标为(﹣4,0).
②当AC与AB是对应边时,∵△ADB∽△CBA
∴
=
=
,
∴AC=
AB=
×
=4,
∴OC=OA+AC=2+4=6,
∴点C的坐标为(﹣6,0).
综上所述,在x轴上有一点C(﹣4,0)或(﹣6,0),使得以点A、B、C组成的三角形与△ADB相似.
【点评】本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,解一元二次方程,一次函数图象上点的坐标特征,相似三角形对应边成比例的性质,难点在于(3)要分情况讨论.
六、解答题(本大题共12分)
23.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4的打印纸等,这些矩形的长与宽之比都为
:
1,我们将具有这类特征的矩形称为“完美矩形”如图
(1),在“完美矩形”
ABCD中,点P为AB边上的定点,且AP=AD.
(1)求证:
PD=AB.
(2)如图
(2),若在“完美矩形“ABCD的边BC上有一动点E,当
的值是多少时,△PDE的周长最小?
(3)如图(3),点Q是边AB上的定点,且BQ=BC.已知AD=1,在
(2)的条件下连接DE并延长交AB的延长线于点F,连接CF,G为CF的中点,M、
N分别为线段QF和CD上的动点,且始终保持QM=CN,MN与DF相交于点H,请问GH的长度是定值吗?
若是,请求出它的值,若不是,请说明理由.
【分析】
(1)根据题中“完美矩形”
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 中考 模拟 试题 解析