微积分的发展历程.docx
- 文档编号:8352372
- 上传时间:2023-01-30
- 格式:DOCX
- 页数:10
- 大小:28.23KB
微积分的发展历程.docx
《微积分的发展历程.docx》由会员分享,可在线阅读,更多相关《微积分的发展历程.docx(10页珍藏版)》请在冰豆网上搜索。
微积分的发展历程
微积分的发展历程
微积分的创立,被誉为“人类精神的最高胜利”,在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。
在数学史上,18世纪可以说是分析研究的时代,也是向现代数学过渡的重要时期。
1)微积分的发展
无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。
不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor)、麦克劳林(C.Maclaurin)、棣莫弗(A.deMoivre)、斯特林(J.Stirling)等。
泰勒(1685_1731)做过英国皇家学会秘书。
他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理其中v为独立变量z的增量,和为流数。
泰勒假定z随时间均匀变化,故为常数,从而上述公式相当于现代形式的“泰勒公式”:
。
泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。
但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。
泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。
麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。
《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。
麦克劳林之后,英国数学陷入了长期停滞的状态。
微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。
与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。
2)积分技术与椭圆积分
18世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。
在这方面,积分技术的推进尤为明显。
当18世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。
例如雅各布•伯努利在求双纽线(在极坐标下方程为)弧长时,得到弧长积分。
在天文学中很重要的椭圆弧长计算则引导到积分。
欧拉在1774年处理弹性问题时也得到积分。
所有这些积分都属于后来所说的“椭圆积分”的范畴,它们既不能用代数函数,也不能用通常的初等超越函数(如三角函数、对数函数等)表示出来。
椭圆积分的一般形式是。
勒让德后来将所有的椭圆积分归结为三种基本形式。
在18世纪,法尼亚诺、欧拉、拉格朗日和勒让德等还就特殊类型的椭圆积分积累了大量结果。
对椭圆积分的一般研究在19世纪20年代被阿贝尔和雅可比分别独立地从反演的角度发展为深刻的椭圆函数理论。
3)微积分向多元函数的推广
虽然微积分的创立者已经接触到了偏微商和重积分的概念,但将微积分算法推广到多元函数而建立偏导数理论和多重积分理论的主要是18世纪的数学家。
1720年,尼古拉.伯努利证明了函数在一定条件下,对x,y求偏导数其结果与求导顺序无关,即相当于有欧拉在1734年的一篇文章中也证明了同样的事实。
在此基础上,欧拉在一系列的论文中发展了偏导数理论。
达朗贝尔在1743年的著作《动力学》和1747年关于弦振动的研究中,也推进了偏导数演算。
不过当时一般都用同一个记号d表示通常导数与偏导数,专门的偏导数记号、、…到19世纪40年代才由雅可比在其行列式理论中正式创用并逐步普及,虽然拉格朗日在1786年曾建议使用这一符号。
多重积分实际上已包含在牛顿关于万有引力的计算中,但牛顿使用了几何论述。
在18世纪,牛顿的工作被人以分析的形式推广。
1748年欧拉用累次积分算出了表示一厚度为的椭圆薄片对其中正上方一质点的引力的重积分:
,积分区域由椭圆围成。
到1770年左右,欧拉已经能给出计算二重定积分的一般程序。
而拉格朗日在关于旋转椭球的引力的著作中,用三重积分表示引力,并开始了多重积分变换的研究。
4)无穷级数理论
微积分的发展与无穷级数的研究密不可分。
牛顿在他的流数论中自由运用无穷级数,他凭藉二项式定理得到了sinx,cosx,tanx,arcsinx,arctanx和等许多函数的级数。
泰勒级数则提供了将函数展成无穷级数的一般方法。
在18世纪,各种初等函数的级数展开陆续得到,并在解析运算中被普遍用来代表函数而成为微积分的有力工具。
莱布尼茨也曾独立地得到了sinx,cosx,和arctanx等的级数,但他却对微积分问题的有限或封闭形式的解更感兴趣,他的学生们弥补了这方面的不足。
尤其是雅各布.伯努利,他在1689——1704年间撰写了5篇关于无穷级数的论文,使他成为当时这一领域的权威,这些论文的主题也是关于函数的级数表示及其在求函数的微分与积分、求曲线下的面积和曲线长等方面的应用。
这些构成了雅各布.伯努利对微积分算法的重要贡献。
但就级数理论本身而言,其中一个很有启发性的工作是关于调和级数的和是无穷的证明。
他首先指出了
故有。
这意味着可将原级数中的项分组并使每一组的和都大于1,于是我们总可以得到调和级数的有限多项的和,使它大于任何给定的量。
调和级数的讨论引起了对发散级数的兴趣并产生了许多重要的结果,特别是利用发散级数而获得的一些著名的数值逼近公式。
例如,斯特林在1730年得到一个发散的级数表示:
它相当于利用它可以作的近似计算。
当n很大时,,称之为斯特公式,虽然这一极限情形是由棣莫弗得到的。
5)牛顿的“流数术”
牛顿(IsaacNewton,1642——1727)于伽利略去世那年——1642年(儒略历)的圣诞出生于英格兰肯郡伍尔索普村一个农民家庭,是遗腹子,且早产,生后勉强存活。
少年牛顿不是神童成绩并不突出,但酷爱读书与制作玩具。
17岁时,牛顿被母亲从他就读的格兰瑟姆中学召回田庄务农,但在牛顿的舅父 W.埃斯库和格兰瑟姆中学校长史托克思的竭力劝说下,牛顿的母亲在九个月后又允许牛顿返校学习。
史托克思校长的劝说辞中,有一句话可以说是科学史上最幸运的预言,他对牛顿的母亲说:
“在繁杂的农务中埋没这样一位天才,对世界来说将是多么巨大的损失!
”
牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作。
三一学院至今还保存着牛顿的读书笔记,从这些笔记可以看出,就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。
1665年8月,剑桥大学因瘟疫流行而关闭,牛顿离校返乡,随后在家乡躲避瘟疫的两年,竟成为牛顿科学生涯中的黄金岁月。
制定微积分,发现万有引力和颜色理论,……,可以说牛顿一生大多数科学创造的蓝图,都是在这两年描绘的。
流数术的初建
牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。
说在此时,牛顿首创了小o记号表示x的无限小且最终趋于零的增量。
1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展。
据他自述,1665年11月发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法)。
1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》(TractonFluxions)著称,当时虽未正式发表,但在同事中传阅。
《流数简论》(以下简称《简论》)是历史上第一篇系统的微积分文献。
《流数简论》反映了牛顿微积分的运动学背景。
该文事实上以速度形式引进了“流数”(即微商)概念,虽然没有使用“流数”这一术语。
牛顿在《简论》中提出微积分的基本问题如下:
(a)设有两个或更多个物体A,B,C,…在同一时刻内描画线段x,y,z,…。
已知表示这些线段关系的方程,求它们的速度p,q,r,…的关系。
(b)已知表示线段x和运动速度p、q之比的关系方程式,求另一线段y。
牛顿对多项式情形给出(a)的解法。
以下举例说明牛顿的解法。
已知方程,牛顿分别以和代换方程中的x和y,然后利用二项式定理,展开得
消去和为零的项,得
,以o除之,得
这时牛顿指出“其中含o的那些项为无限小”,略去这些无限小,得
即所求的速度p与q的关系。
牛顿对所有的多项式给出了标准的算法,即对多项式,问题(a)的解为
对于问题(b),牛顿的解法实际上是问题(a)的解的逆运算,并且也是逐步列出了标准算法。
特别重要的是,《简论》中讨论了如何借助于这种逆运算来求面积,从而建立了所谓“微积分基本定理”。
牛顿在《简论》中是这样推导微积分基本定理的:
e
d
a
cqb
y
x
p=I
f
g
如上图,设ab=x,△abc=y为已知曲线q=f(x)下的面积,作de∥ab⊥ad∥be=p=1。
当线cbe以单位速度向右移动时,eb扫出面积 abed=x,变化率;cb扫出面积△abc=y,变化率,。
由此得,
这就是说,面积y在点x处的变化率是曲线在该处的q值。
这就是微积分基本定理。
利用问题(b)的解法可求出面积y。
作为例子,牛顿算出纵坐标为 曲线下的面积是;反之,纵坐标为的曲线真切线斜率为。
当然,《简论》中对微积分基本定理的论述并不能算是现代意义下的严格证明。
牛顿在后来的著作中对微积分基本定理又给出了不依赖于运动学的较为清楚的证明。
在牛顿以前,面积总是被看成是无限小不可分量之和,牛顿则从确定面积的变化率入手通过反微分计算面积。
前面讲过,面积计算与求切线问题的互逆关系,以往虽然也曾被少数人在特殊场合模糊地指出,但牛顿却能以足够的敏锐与能力将这种互逆关系明确地作为一般规律揭示出来,并将其作为建立微积分普遍算法的基础。
正如牛顿本人在《流数简论》中所说:
一旦反微分问题可解,许多问题都将迎刃而解。
这样,牛顿就将自古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法——正、反流数术亦即微分与积分,并证明了二者的互逆关系而将这两类运算进一步统一成整体。
这是他超越前人的功绩,正是在这样的意义下,我们说牛顿发明了微积分。
在《流数简论》的其余部分,牛顿将他建立的统一算法应用于求曲线切线、曲率、拐点、曲线求长、求积、求引力与引力中心等16类问题,展示了他的算法的极大的普遍性与系统性。
流数术的发展
《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的。
牛顿于1667年春天回到剑桥,对自己的微积分发现未作宣扬。
他在这一年10月当选为三一学院成员,次年又获硕士学位,并不是因为他在微积分方面的工作,而是因为在望远镜制作方面的贡献。
但从那时起直到1693年大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后定成了三篇微积分论文,它们分别是:
(1)《运用无限多项方程的分析》(DeAnalysiperAequationesNumeroTerminorumInfinitas,简称《分析学》,完成于1669年);
(2)《流数法与无穷级数》(MethodusFluxionumetSerierumInfinitarum,简称《流数法》,完成于1671年);
(3)《曲线求积术》(TractatusdeQuadraturaCurvarum,简称《求积术》,完成于1691年)。
这三篇论文,反映了牛顿微积分学说的发展过程,并且可以看到,牛顿对于微积分的基础先后给出了不同的解释。
第一篇《分析学》是牛顿为了维护自己在无穷级数方面的优先权而作。
1668年苏格兰学者麦卡托(N.Mercator)发表了对数级数的结果,这促使牛顿公布自己关于无穷级数的成果。
《分析学》利用这些无穷级数来计算流数、积分以及解方程等,因此《分析学》体现了牛顿的微保健与无穷级数紧密结合的特点。
关于微积分本身,《分析学》有简短的说明。
论文一开始就叙述了计算曲线下面积的法则。
设有表示的曲线,牛顿论证所求面积为。
牛顿在论证中取x而不是时间t的无限小增量“瞬”为o,以代x,代z,则
用二项式定理展示后以o除两边,略去o的项,即得。
反过来就知曲线下的面积是。
牛顿接着给出了另一条法则:
若y值是若干项之和,那么所求面积就是由其中每一项得到的面积之和,这相当于逐项积分定理。
由上述可知,牛顿《分析学》以无限小增量“瞬”为基本概念,但却回避了《流数简论》中的运动学背景而将“瞬”看成是静止的无限小量,有时直截了当令为零,从而带上了浓厚的不可分量色彩。
第二篇论文《流数法》可以看作是1666年《流数简论》的直接发展。
牛顿在其中又恢复了运动学观点,但对以物体速度为原形的流数概念作了进一步提炼,并首次正式命名为“流数”(fluxion)。
牛顿后来对《流数法》中的流数概念作了如下解释:
“我把时间看作是连续的流动或增长,而其他量则随着时间而连续增长,我从时间的流动性出发,把所有其他量的增长速度称之为流数,又从时间的瞬息性出发,把任何其他量在瞬息时间内产生的部分称之为瞬”。
《流数法》以清楚明白的流数语言表述微积分的基本问题为:
“已知表示量的流数间的关系的方程,求流量间的关系”。
流数语言的使用,使牛顿的微积分算法在应用方面获得了更大的成功。
无论是《分析学》还是《流数法》都是以无限小量作为微积分算法的谁基础,所不同的是:
在《流数法》中变量x,y的瞬,随时间瞬o而连续变化;而在《分析学》中变量x,y的瞬则是某种不依赖于时间的固定的无限小微元。
大约到17世纪80年代中,牛顿关于微积分的基础在观念上发生了新的变革,这就是“首末比方法”的提出。
首末比法最先以几何形式在《自然哲学的数学原理》一书中发布,其详尽的分析表述则是在其第三篇微积分论文《曲线求积术》中给出的。
《曲线求积术》是牛顿最成熟的微积分著述。
牛顿在其中改变了对无限小量的依赖并批评自己过去那种随意忽略无限小瞬o的做法:
“在数学中,最微小的误差也不能忽略。
……在这里,我认为数学的量不是由非常小的部分组成的,而是用连续的运动来描述”。
在此基础上定义了流数概念之后,牛顿写道:
“流数之比非常接近于在相等但却很小的时间间隔内生成的流量的增量比。
确切地说,它们构成增量的最初比”。
牛顿接着借助于几何解释把流数理解为增量消逝时获得的最终比。
他举例说明自己的新方法如下:
为了求的流数,设x变为,则变为
,构成两变化的“最初比”:
,然后“设增量o消逝,它们的最终比就是”,这也是x的流数与的流数之比。
这就是所谓“首末比方法”,它相当于求函数自变量与因变量变化之比的极限,因而成为极限方法的先导。
牛顿在《曲线求积术》中还第一次引进了后来被普遍采用的流数记号:
,,表示变量x,y,z的一次流数(导数),,,表示二次流数,,,表示三次流数,等等。
牛顿对于发表自己的科学著作态度谨慎。
除了两篇光学著作,他的大多数菱都是经朋友再三催促才拿出来发表。
上述三篇论文发表都很晚,其中最先发表的是最后一篇《曲线求积术》,1704年载于《光学》附录;《分析学》发表于1711年;而《流数法》则迟至1736年才正式发表,当时牛顿已去世。
牛顿微积分学说最早的公开表述出现在1687年出版的力学名著《自然哲学的数学原理》(Philosophiaenaturalisprincipiamathematica,以下简称《原理》)之中,因此《原理》也成为数学史上的划时代著作。
《〈原理》与微积分
《原理》中并没有明显的分析形式的微积分,整部著作是以综合几何的语言写成的。
但牛顿在第一卷第1章开头部分通过一组引理(共11条)建立了“首末比法”,这正是他后来在《曲线求积术》中作为流数运算基础而重新提出的方法,不过在《原理》中,首末比方法本身也强烈地诉诸几何直观。
第一卷引理1:
“量以及量之比,若在一有限时间内连续趋于相等,并在该时间结束前相互接近且其差可小于任意给定量,则它们最终也变为相等”,可以看作是初步的极限定义。
在随后的引理中牛顿便借极限过程来定义曲边形的面积:
如图6.6,在曲线acE与直线Aa,AE所围成的图形AacE中内接任意个数的矩形Ab,Bc,Cd,…,同时作矫形akbl,bLcm,cMdn,…。
牛顿首先设所有的底AB,BC,CD,DE,…皆相等,证明了“当这些矩形的宽无限缩小而它们的个数无限增加时,……内接形AkbLcMdD,外接形AalbmcndoE与曲线abcdE相互的最终比是等量比”。
然后指出当矩形之宽互不相等(如图设最大宽度为AF)但都无限缩小时,上述最终比仍是等量比。
牛顿还证明书了:
给定曲线弧以及相应的弦和切线段,当点A与B“相接近而最终相合时”,“弦、弧及切线间相互的最终比为等量比”,等等。
M d o
A BF C D E
aK
L c n
l f
牛顿预见到首末比方法可能遭受的批评,并意识到争论的焦点将在于“最终比”概念,于是在前述引理的评注中对什么是“最终比”作了进一步说明:
“消逝量的最终比实际上并非最终量之比,而是无限减小的量之比所趋向的极限。
它们无限接近这个极限,其差可小于任意给定的数,但却永远不会超过它,并且在这些量无限减小之间也不会达到它。
”
尽管《原理》表现出以极限方法作为微积分基础的强烈倾向,但并不意味着牛顿完全摒弃无限小观点。
在第二卷第2章中,人们可以看到无限小瞬方法的陈述:
“任何生成量(genitum)的瞬,等于生成经的各边的瞬乘以这些边的幂指数及系数并逐项相加。
”此处所谓“生成量”,即函数概念的雏形。
牛顿说明这类量的例子有“积、商、根、……”等,并把它们看成是“变化的和不定的”;生成量的瞬则是指函数的微分。
因此上述陈述实际上相当于一些微分运算法则。
例如牛顿分别以a,b,c,…表示任意量A,B,C,…的瞬,他证明了AB的瞬等于,的瞬等于,的瞬等于,一般幂的瞬等于,…等等。
《原理》在创导首末比方法的同时保留了无限小瞬,这种做法常常被认为自相矛盾而引起争议。
实际上,在牛顿的时代,建立微积分严格时,坚持对微积分基础给出不同解释,说明了他对微积分基础所存在的困难的深邃洞察和谨慎态度。
《原理》被爱因斯坦盛赞为“无比辉煌的演绎成就”。
全书从三条基本的力学定律出发,运用微积分工具,严格地推导证明了包括开普勒行星运动三大定律、万有引力定律等在内有一系列结论,并且还将微积分应用于流体运动、声、光、潮汐、彗星乃至宇宙体系,充分显示了这一新数学工具的威力。
《原理》中的微积分命题虽然都采用了几何形式来叙述、证明,但正如牛顿本人后来解释的那样:
发现原理中的绝大多数命题是依靠使用了“新分析法”,然后再“综合地证明”。
事实上,我们在前面已经看到,牛顿发明微积分主要是依靠了高度的归纳算法的能力。
并没有多少综合几何的背景。
他1664年参加巴罗主考的三一学院津贴生考试时,因欧氏几何成绩不佳差一点未能通过。
而几乎是在同时,他开始研究微积分并在不到一年的时间里就做了邮基本发现。
牛顿后来才重新钻研了巴罗译注的几何《原本》,弥补了这方面的不足,其结果是《原理》中的力学综合体系。
然而就数学而言,牛顿在《原理》中给微积分披上的几何外衣,使他的流数术显得僵硬呆板。
固守牛顿的几何形式,在18世纪阻碍了英国数学的发展。
牛顿的科学贡献是多方面的。
在数学上,除了微积分,他的代数名著《普遍算术》,包含了方程论的许多重要成果,如虚数根必成对出现、笛卡儿符号法则的推广、根与系数的幂和公式等等;他的几何杰作《三次曲线枚举》,首创对三次曲线的整体分类研究,是解析几何发展新的一页;在数值分析领域,今天任何一本教程都不能不提到牛顿的名字:
牛顿迭代法(牛顿——拉弗森公式)、牛顿——格列高里公式、牛顿——斯特林公式、……;牛顿还是几何概率的最早研究者。
牛顿是一位科学巨人,但他有一次在谈到自己的光学发现时却说:
“如果我看得更远些,那是因为我站在巨人的肩膀上”。
还有一次,当别人问他是怎样作出自己的科学发现时,他的回答是:
“心里总是装着研究的问题,等待那最初的一线希望渐渐变成普照一切的光明!
”据他的助手回忆,牛顿往往一天伏案18小时左右,仆人常常发现送到书房的午饭和晚饭一口未动。
偶尔去食堂用餐,出门便陷入思考,兜个圈子又回到住所.惠威尔(W.Whewell)在《归纳科学史》中写道:
“除了顽强的毅力和失眠的习惯,牛顿不承认自己与常人有什么区别”。
可能是由于早年经历所致,牛顿性格沉郁内向,不善在公众场合表述思想,但这却并没有影响他后来出任伦敦造币局局长和皇家学会连选连任,领导这个最高学术机构长达四分之一世纪。
牛顿终身未婚,晚年由外甥女凯瑟琳协助管家。
牛顿的许多言论、轶闻,就是靠凯瑟琳和她的丈夫康杜德的记录留传下来的。
家喻户晓的苹果落地与万有引力的故事,就是凯瑟琳告诉法国哲学家伏尔泰并被后者写进《牛顿哲学原理》一书中。
牛顿1727年因患肺炎与痛风而逝世,葬于威斯特敏斯特大教堂。
当时参加了葬礼的伏尔泰亲眼目睹英国的大人物争抬牛顿的灵柩而无限感叹。
剑桥三一学院教堂大厅内立有牛顿全身雕像。
牛顿去世后,外甥女凯瑟琳夫妇在亲属们围绕遗产的纠纷中不惜代价保存了牛顿的手稿。
现存牛顿手稿中,仅数学部分就达5000多页。
6)牛顿与莱布尼茨
牛顿和莱布尼茨都是他们时代的巨人。
就微积分的创立而言,尽管在背景、方法和形式上存在差异、各有特色,但二者的功绩是相当的。
他们都使微积分成为能普遍适用的算法,同时又都将面积、体积及相当的问题归结为反切线(微分)运算。
应该说,微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛顿与莱布尼茨的工作。
在科学史上,重大的真理往往在条件成熟的一定时期由不同的探索者相互独立地发现,微积分的创立,情形也是如此。
我们知道,牛顿在1687年以前没有公开发表过任何微积分的文章,而莱布尼茨则在1684和1686年分别发表了微分学与积分学的论文。
1687年当牛顿在《原理》中首次发布他的流数方法时,他在前言中作了这样一段说明:
“十年前,我在给学问渊博的数学家莱布尼茨的信中曾指出:
我发现了一种方法,可用以求极大值、极小值、作切线以及解决其他类似的问题,而且这种方法也适用于无理数,……。
这位名人回信说他也发现了类似的方法,并把他的方法给我看了。
他的方法与我的大同小异,除了用语、符号、算式和量的产生方式外,没有实质性区别。
”
这可以说是对微积分发明权问题的客观评述,遗憾的是,它在《原理》第3版时被删去了,原因是期间牛顿与莱布尼茨之间发生了优先权问题的争执。
争端是由局外人挑起的。
瑞士数学家德丢勒(N.F.deDuillier)1699年在一本小册子中提出“牛顿是微积分的第一发明人”,而莱布尼茨作为“第二发明人”,“曾从牛顿那里有所借鉴”。
莱布尼茨立即对此作了反驳。
1712年,英国皇家学会专门指定了一个委员会进行调查,并于翌年公布了一份著名的《通报》,宣布“确认牛顿为第一发明人”。
这引起了莱布尼茨的申诉。
争论在双方的追随者之间越演越烈,直到莱布尼茨和牛顿都去世以后,才逐渐平息并得到解决。
经过调查,特别是对莱布尼茨手稿的分析,证实两人确实是相互独立地完成了微积分的发明。
就发明时间而言,牛顿早于莱布尼茨;就发表时间而言,莱布尼茨则先于牛顿。
值得补充的是,尽管发生了纠纷,两位学者却从未怀疑过对方的科学才能。
有一则记载说,1701年在柏林王宫的一次宴会上,当普鲁士王问到对牛顿的评价时,莱布尼茨回答道:
“综观有史以来
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 发展 历程