机械毕业设计英文外文翻译59常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用.docx
- 文档编号:8339668
- 上传时间:2023-01-30
- 格式:DOCX
- 页数:16
- 大小:110.92KB
机械毕业设计英文外文翻译59常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用.docx
《机械毕业设计英文外文翻译59常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用.docx》由会员分享,可在线阅读,更多相关《机械毕业设计英文外文翻译59常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用.docx(16页珍藏版)》请在冰豆网上搜索。
机械毕业设计英文外文翻译59常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用
附录1中文译文
常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用
陈好升,李疆,陈大荣,王佳道
1.国家摩擦学研究所,清华大学,中国北京,100084
2.北京科技大学,机械工程系,中国,100083
摘要:
为了研究与分析非牛顿学流体在润滑光碟表面时常规压力所产生的影响,包含这个常规作用力的一个修正的瑞诺德公式被建立。
公式中对于第一常规压力不同的表述源自于瑞林-埃里克森第二流体定律和流体冲力公式。
光碟表面润滑的结果被计算从而用在了的瑞诺德分析公式之中。
在持久稳定的薄层润滑作用之下,常规的压力和负载受到正常速度的限制,因此在计算中可以直接省略。
当光滑流体的高度变化或者润滑膜的厚度下降时,常规的速度下降,故此此时需要在计算中考虑到第一常规压力的不同所产生的影响。
关键词:
非牛顿学流体、第一常规压力差分、磁性数据存储系统。
1.介绍
正如德布鲁尼和波致所说的那样,一个非牛顿润滑是在磁性记录系统中用来避免干燥接触。
事实已经证明了通过引入非牛顿学流体以高的剪切速度进行切向润滑是可以达到在光滑的覆盖表面之下显著降低压力的形成的效果。
为了能够明确说明非牛顿学流体在主要碟片表面的润滑作用,李旺龙提供了一个平均瑞诺德公式并且指出幂律流体的流动影响效率在负荷能力方面比表面粗糙度更加明显。
非牛顿流体的性能在对磁性光碟表面进行润滑时是重要的影响因素。
常规压力作用是非牛顿学流体的特性。
许多研究结果都证明了在许多润滑中常规压力的作用都有明显的增加,第一常规压力差分比第二常规压力差分更加明显。
常规压力的作用在润滑中需要被分析,第一常规压力差分的计算方法也需要去研究。
在这篇论文中,第一常规压力差分是一种具有可伸缩性的非牛顿流体,就像麦克斯韦尔流体,都源自于被建立的包含常规压力的润滑公式。
数字思想被用在计算光碟表面的润滑作用之中。
2.第一常规压力的解释
第一常规压力来源于瑞林-埃里克森流体公式
(1)。
式中,是压力,是剪切压力的张量,是剪切速率的张量,是流体粘质系数,是黏弹性流体的第二定律系数,是由材料的时间衍生出来的。
公式
(1)适用于随机等同系统。
在这篇论文中,卡特森等同系统被抛出在外,不以考虑。
在等同系统中的非牛顿流体的微观单位在图1中已经给出,(x,y,z)是修正等同系统中用来计算用的,(z,y,x)是参考等同系统而(1,2,3)是下面等同系统中适用于微观单位的。
被定义为经下等同系统的微观单位的角速度。
这样的话,角速度的微观单位就是。
Figure1.Maxwellmicrounitinthecoordinatesystems
下面的等同系统(1,2,3)是一个刚性的卡特森等同系统。
等同的起源被定义在了微观单位上,随着单位的移动和转动而进行等同的移动和转动。
下列等同的方向经常和剪切速度的张量的方向是一致的。
采用普哥理论,材料时间的起源应该可以被瑞林-埃里克森剪切速度和朱漫协方差衍生公式推导出来,在下列等同系统中,新的张量被表示为从而出现在公式
(2)中,并且它还可以有在任意的等同系统中。
是该方向上的速度。
当润滑是理想的粘性流体的时候,下列等同系统中的主要轴的方向与相对等同系统中的主要压力轴的方向是一致的。
这就意味着并且第一常规压力方差也是零。
材料时间的衍生在图
(2)中被定义为下列等同系统。
如果材料时间的衍生是相对等同的话,下列等同系统中的微观单位的角度就应该被添加进来。
从公式(4)中我们可以得出,常规压力可以用公式(5)来表示。
在公式(5)中,是液体的粘性。
公式右边的第二项表示出了粘性对于常规压力的作用。
第三项表示出了第一常规压力方差的作用。
在公式(6)中得到了表达。
是缓和时间,是粘性方差。
第四项表示出了第二常规压力方差的作用。
通常人们认为第二常规压力方差的作用远远小于第一常规压力方差,第四项是一个省略项,第一常规压力方差在公式(7)中表示出来了。
在润滑中,润滑膜的厚度远远小于其它的尺寸。
比较占有支配地位的粘性和粘性变化率而言,在公式(7)中都被忽略了,第一常规压力方差被简化成了公式(8)。
在公式(8)中,是缓解时间,是下列相对等同的粘性角度,是由非牛顿学流体的弹性所引起的,被认为是微观单位的黏弹性的自然频率。
因此,第一常规压力方差被表示为公式(9).
总的来说,第一常规压力方差的定义如下式所示:
是第一常规压力方差的功能,通过公式(9)和(10),它可以表示为公式(11)。
3.瑞诺德公式中包含第一常规压力方差
为了分析第一常规压力在润滑中的作用,一个修正模式包含了第一常规压力方差的瑞诺德公式首先在稳定的薄片状润滑的条件下被建立起来。
在主要光碟表面的润滑,随机相似系统中的剪切力和常规压力在等同转化之后的表达式正如公式(12)所示。
公式(12)来源于等同的改变,另一个公式表达出了来自于动量公式之中的压力之间的关系,如公式(13)所示:
在实际的润滑条件下,公式(13)被简化为一些最基本的假设,动量公式变成了公式(14)所示的形式。
(1)惯性力和外力不被考虑时,
(2)流体不能够被压缩,
(3)和主要流体比较而言
被忽略了。
从公式()和公式()可知,一个修正的瑞诺德公式出现了并且被表示成为公式(15)的样式。
在公式(15)中,是压力,是表面速度,是润滑膜的厚度,是常规润滑膜的运动速度。
是相对量。
简单的几何学示意图如图2所示。
4.润滑的数学结果
在这一部分中,数学思想被用于润滑结果的计算之中。
基于结果而言,对受压力物体的第一常规压力方差及其负载能力都得到分析。
用到的分析公式在公式(16)中都已经给出了。
在公式(16)中,无量纲的参数都说明如下。
为了简化计算,在稳定的薄片润滑中,其他因素诸如温度等都被认为是一个常量。
超放松理论在这里被应用。
4.1在稳定的薄片润滑中的数学结果
非牛顿流体的第一常规压力方差将作用在压力轮廓及其负载能力。
在b/2的中间部分的压力分布已表示在图3中。
是润滑中的无量纲压力,并不受第一常规压力方差的影响。
而是在第一常规压力方差作用之下的无量纲压力。
图4反映出了负载能力。
在图4中,是在第一常规压力方差作用之下的无量纲负载能力,是不受第一常规压力方差的影响的无量纲负载能力。
是牛顿学流体的无量纲负载能力。
从图3和图4显示的结果我们可经得出,在常规压力的作用之下润滑时压力和负载能力都有所增加。
但是增加量并不是很明显。
所以在润滑计算的过程中可以忽略常规压力的影响和作用。
在实际润滑之中,第一常规压力方差的作用是增加负载能力,因此,忽略第一常规压力方差是一个安全的设计思想。
图3.受压力作用的物体中第一常规压力差分的作用
图4.第一常规压力对负载能力的作用
从图4中,我们可以发现负载能力的变化是由粘性的变化所导致的。
例如,在麦克斯韦尔流体润滑中,不同的粘性主要是由剪切速度所造成的。
粘性的变化是影响润滑作用的主要因素,第一常规压力方差的作用是在小范围内增加负载能力。
第一常规压力方差的作用受到了两个因素的影响。
一个是材料的力学性能。
从公式(11)中我们可以看出,第一常规压力方差的决定性因素是自然频率和非牛顿学流体的缓解时间。
同时,速度的微分受到了剪切速度的影响。
另一个因素是常规速度。
在公式(16)中,约第一常规压力方差的功能受到了常规速度的约束。
通常在理论分析中,常规速度考虑的很少,与理论速度相比,通常也可以被忽略。
常规速度减弱了第一常规压力方差的作用。
例如,在计算中被使用的变量,无量纲第一常规压力方差的数值是-36,但是计算得出的实际速度却连0.0021都不到,所以在公式(16)中右边的第二项的作用远远小于几何图形的作用。
在常规速度足够大的情况下,第一常规压力方差的作用在数学计算中就需要被考虑了。
受压力物体在不同的无量纲常规速度在图5中被表示出来了。
随着常规速度的增加,第一常规压力作用方差的作用在受压力物体上变得越来越重要。
当无量纲常规压力是表面速度的1%的时候,也就是说v=0.01,压力增量的峰值大约为5%。
图5.受压力物体在常规压力方差下的作用
常规压力在真正的磁性光碟表面的润滑的时候需要被考虑。
例如,在与光碟有关的实验中,光碟的飞行高度是变化的。
同样,事实也证明了在受驱动的实验之中,润滑膜的厚度也下降了。
包含常规速度的作用的瑞诺德公式需要被修正。
4.2常规速度的作用
常规速度不仅影响第一常规压力方差的作用,但是同样造成挤压作用。
由各项可以推出,瑞诺德公式可以被表示为公式(17)的形式。
在公式(17)中,常规速度的润滑可以被表示为公式(18)。
由公式(18)和公式(17),用于数学计算的公式可以表示为公式(19)。
公式(19)右边的第一项表示出了几何学的作用,第二项表示出了扩展作用,第三项代表了第一常规压力差分的作用。
当v=0.01U,考虑到不同影响的受压力物体在图6中已经表示出来了。
在图6中,代表受压力物体在几何润滑和第一常规压力方差的作用下的作用。
并且随着正常润滑速度的增加,第一常规压力方差的影响增大,在图6中展示出的结果中,第一常规压力方差是不应该被忽略的。
从结果来看,我们同样可以找出伸长作用也比第一常规压力方差的作用更加重要。
如图6所示,张量作用所引起的压力的峰值比第一常规压力差分所引起的压力峰值效果要明显的多。
因此,在光碟表面的润滑中,润滑张量的作用和第一常规压力差分都应该被考虑。
5.结论
当一个非牛顿学流体润滑被用在磁性光碟表面润滑的时候,它们的常规压力作用可以通过包含第一常规压力差分功能的修正的瑞诺德公式来计算。
对于第一常规压力差分的解释源自于瑞林-埃里克森公式和动量公式,相似转换也是同样。
常规压力在润滑光碟表面的时候不仅受到非牛顿学流体材料的变量的影响,同样也受到常规速度的影响。
在稳定的薄片流层下,压力和负载能力在第一常规压力差分的作用下都有所增加,但是增加的作用不是很明显,因为较小的常规速度。
考虑到不仅来自于理论分析,而且来自于真实的润滑计算,第一常规压力差分的润滑作用在不同的主要因素的影响下是可以被人们忽略的。
当光滑面运动而常规润滑速度增加了之后,包含常规速度的作用的瑞诺德公式再次被修正。
数学结果显示出了第一常规压力差分的增大作用经及在润滑计算的过程中需要被考虑。
附录2英文原文
NormalStressEffectsinSlider-DiskInterfaceLubricationwithNon-NewtonianFluid
ChenHaosheng1*,LiJiang2,ChenDarong1,WangJiadao1
1.StateKeyLaboratoryofTribology,TsinghuaUniversity,BeijingChina100084.
2.Departmentofmechanology,UniversityofScienceandTechnologyBeijing,China,100083
Abstract
Toanalyzenormalstresseffectsofnon-Newtonianfluidinlubricationofthemagnetichead-diskinterface,amodifiedReynoldsequationincludingtheeffectsofnormalstressisestablished.TheexpressionofthefirstnormalstressdifferenceintheequationisderivedfromtheRivlin-Ericksensecondorderflowequationandthefluidmomentumequation.Lubricationresultsofthemagnetichead-diskinterfaceiscalculatedusingthemodifiedReynoldsequation.Undertheconditionofsteadylaminarlubrication,thepressureandtheloadcapacityofnon-Newtonianfluidisincreasedbytheeffectofthefirstnormalstressdifference,buttheeffectisconstrainedbythenormalvelocityandcanbeomittedinthecalculation.Whenthesliderflyingheightchangesorthelubricantfilmthicknessdecreases,thenormalvelocityincreasesandtheeffectofthefirstnormalstressdifferenceneedtobeconsidered.
Keywords:
non-Newtonianfluid,firstnormalstressdifference,magneticdatastoragesystems
1.Introduction
AsmentionedbyDeBruyneandBogy[1],anon-Newtonianlubricantisusedforsomemagneticrecordingsystemtoavoiddrycontact.Ithasbeenprovedthatasignificantreductionofpressurebuildupundertheslidercovercanbeachievedbyintroducingnon-Newtonianshearthinninglubricantathighshearrate.Tospecifythebehaviorofnon-Newtonianfluidinthelubricationofthehead-diskinterface,Wang-LongLi[2]providesanaverageReynoldsequationandpointoutthattheeffectoftheflowbehaviorindexofthepower-lawfluidonloadcapacityismoresignificantthanthatofthesurfaceroughness.Thepropertiesofnon-Newtonianfluidareimportantfactorsinthelubricationofthemagnetichead-diskinterface.
Normalstresseffectisacharacteristicofnon-Newtonianfluid.Someresearchresults[3-5]haveprovedthattheeffectsofthenormalstressinsomelubricantsareobviouslyincreased,andthefirstnormalstressdifferenceisfarmorethanthesecondnormalstressdifference.Thenormalstresseffectneedstobeanalyzedinthelubrication,andthemethodtocalculatethefirstnormalstressdifferenceneedstobeinvestigated.Inthispaper,theexpressionofthefirstnormalstressdifferenceofakindofviscoelasticnon-NewtonianfluidsuchasMaxwellfluidisderivedandthelubricationequationwhichcontainstheeffectofthenormalstressisestablished.Numericalmethodisusedtocalculatethelubriationresultsofmagnetichead-diskinterface.
2.ExpressionoftheFirstNormalStress
ThenormalstressisderivedfromRivilin-Ericksen[6]flowEq.
(1).
InEq.
(1),pisthepressure,ijτisthetensoroftheshearstress,ijγ&isthetensoroftheshearrate,1αisthefluidviscosity,2α,3αarethesecondordercoefficienceoftheviscoelasticfluid,tij/DDγ&isthematerialtimederivative.
Equation
(1)isapplicableforrandomcoordinatesystem.Inthispaper,theCartisiancoordinatesystemisadopted.Themicrounitofnon-NewtonianfluidinthecoordinatesystemsisshowninFig.1.The(x,y,z)isthefixedcoordinatesystemforthecalculation,the(zyx′′′,,)isthereferencecoordinatesystemandthe(1,2,3)isthefollowingcoordinatesystemfixedonthemicrounit.ijω′isdefinedastheangularvelocityofthemicrounittothefollowingcoordinatesystem,ijωisdefinedastheangularvelocityofthefollowingcoordinatesystemtothereferencecoordinatesystem.Then,theangularvelocityofthemicrounitisijijijωωω+′=.
Figure1.Maxwellmicrounitinthecoordinatesystems
Thefollowingcoordinatesystem(1,2,3)isarigidCartisiancoordinatesystem.Theoriginofcoordinateisfixedonthemicrounit,andthecoordinatemovesandrotatesastheunitmovesandrotates.Thedirectionofthefollowingcoordinateisalwayssametothatofthetensoroftheshearrate.WithPrager’stheory,thematerialtimederivativeshouldbeexpressedbytheRivlin-EricksenshearingrateandtheJaumanncovariantderivative.Inthefollowingcoordinatesystem,thenewtensordtdij/γ&isexpressedbythepartialderivativeshownasEq.
(2)andcanbeusedtorandomcoordinatesystem.isthevelocityonthedirection.
Whenthelubricantisanidealviscosityfluid,thedirectionoftheprincipalaxisofthefollowingcoordinatesystemissametotheaxisoftheprincipalstresstensorinthereferencecoordinatesystem,thatmeans0=ωandthefirstnormalstressdifferenceiszero.
MaterialtimederivativeinEq.
(2)isdefinedinthefollowingcoordinatesystem.Ifthematerialtimederivativeisinthereferencecoordinate,theangularofthemicrounittothefollowingcoordinatesystemshouldbeadded.
FromtheEq.(4),thenormalstresscanbeexpressedasEq.(5):
InEq.(5),α1istheviscosityofthefluid.Theseconditemontherightoftheequationshowstheeffectoftheviscositytothenormalstress.Thethirditemshowstheeffectofthefirstnormalstressdifference.α2isexpressedasEq.(6).λisrelaxtiontimeandηˆisthedifferentialviscosity[7].
Thefourthitemshowstheeffectofthesecondnormalstressdifference.Itiscommonlyrecognizedthatthesecondnormalstressdifferenceisfarles
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 毕业设计 英文 外文 翻译 59 常规 压力 采用 牛顿 流体 润滑 光滑 碟片 表面 作用