我的计量论文作业.docx
- 文档编号:8182196
- 上传时间:2023-01-29
- 格式:DOCX
- 页数:28
- 大小:33.25KB
我的计量论文作业.docx
《我的计量论文作业.docx》由会员分享,可在线阅读,更多相关《我的计量论文作业.docx(28页珍藏版)》请在冰豆网上搜索。
我的计量论文作业
班级姓名学号
一模型的设定
我们将“国民收入”设为被解释变量,“失业率”,“通胀率”,“汇率
”,“大盘指数变化率”设为解释变量,设立了以下经济学模型:
Y=国民收入(亿元)
=失业率
=通胀率
=汇率
=大盘指数变化率
X5=外债担保率
数据如下:
年份
国民收入
失业率
通胀率
汇率
大盘指数变化率
外债担保率
1991
21826.2
2.30%
3.40%
5.2
1.294
1.86
1992
26937.3
2.30%
6.40%
5.33
1.666
1.87
1993
35260.0
2.60%
14.70%
5.7
0.068
2.13
1994
48108.5
2.80%
24.10%
8.461
-0.223
1.82
1995
59810.5
2.90%
17.10%
8.461
-0.1429
1.91
1996
70142.5
3%
8.30%
8.314
0.6514
1.77
1997
78060.8
3.10%
2.80%
8.28
0.3022
1.79
1998
83024.3
3.10%
-0.80%
8.26
-0.0397
1.28
1999
88479.2
3.10%
-1.40%
8.26
0.1918
1.39
2000
98000.5
3.10%
0.40%
8.26
0.5173
1.26
2001
108068.2
3.60%
0.70%
8.26
-0.2062
0.98
2002
119095.7
4%
-0.80%
8.277
-0.1752
0.9
2003
135174.0
4.30%
1.20%
8.277
0.1027
0.82
2004
159586.7
4.20%
3.90%
8.277
-0.154
0.41
2005
185808.6
4.20%
1.80%
8.1917
-0.083
0.39
2006
217522.7
4.10%
1.50%
7.8087
1.304
0.33
2007
267763.7
4%
4.80%
7.7035
0.9666
0.26
2008
316228.8
4.20%
5.90%
6.8505
-1.286
0.24
2009
343464.7
4.30%
-0.70%
6.8189
0.7998
0.29
2010
400041.2
4.10%
3%
6.6227
-0.1431
0.3
二参数估计
模型为
Y=国民收入(亿元)
=失业率
=通胀率
=汇率
=大盘指数变化率
X5=外债担保率
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
18
Sample(adjusted):
19912007
Includedobservations:
9afteradjustments
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
3.300339
2.799141
1.179054
0.3234
LOG(X1)
-0.847528
0.624481
-1.357172
0.2678
LOG(X2)
0.005220
0.031940
0.163432
0.8806
LOG(X3)
2.560787
0.346992
7.379966
0.0051
LOG(X4)
-0.123677
0.047515
-2.602903
0.0802
LOG(X5)
-0.944396
0.138662
-6.810795
0.0065
R-squared
0.996845
Meandependentvar
11.24235
AdjustedR-squared
0.991586
S.D.dependentvar
0.888625
S.E.ofregression
0.081511
Akaikeinfocriterion
-1.941445
Sumsquaredresid
0.019932
Schwarzcriterion
-1.809962
Loglikelihood
14.73650
F-statistic
189.5641
Durbin-Watsonstat
4.045962
Prob(F-statistic)
0.000600
LOG(Y)=3.300339-0.847528LOG(X1)+0.005220LOG(X2)+2.560787LOG(X3)-0.123677LOG(X4)-0.944396LOG(X5)
R2接近于1;F检验通过;但X1、X2、X4的参数未通过t检验,故解释变量间可能存在多重共线性。
LOG(X1)
LOG(X2)
LOG(X3)
LOG(X4)
LOG(X5)
LOG(X1)
1.000000
-0.449477
0.785400
-0.173970
-0.814595
LOG(X2)
-0.449477
1.000000
-0.510952
-0.079836
0.301552
LOG(X3)
0.785400
-0.510952
1.000000
-0.175767
-0.432978
LOG(X4)
-0.173970
-0.079836
-0.175767
1.000000
-0.264473
LOG(X5)
-0.814595
0.301552
-0.432978
-0.264473
1.000000
LOG(X1)LOG(X5)
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
30
Sample:
19912010
Includedobservations:
20
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
23.92099
1.122626
21.30807
0.0000
LOG(X1)
3.650893
0.331194
11.02343
0.0000
R-squared
0.870982
Meandependentvar
11.56900
AdjustedR-squared
0.863815
S.D.dependentvar
0.832606
S.E.ofregression
0.307259
Akaikeinfocriterion
0.572388
Sumsquaredresid
1.699346
Schwarzcriterion
0.671961
Loglikelihood
-3.723880
F-statistic
121.5159
Durbin-Watsonstat
0.441441
Prob(F-statistic)
0.000000
LOG(Y)=23.92099+3.650893LOG(X1)
R^2=0.870982
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
31
Sample:
19912010
Includedobservations:
16
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
10.58560
0.673101
15.72661
0.0000
LOG(X2)
-0.280130
0.192666
-1.453968
0.1680
R-squared
0.131191
Meandependentvar
11.51426
AdjustedR-squared
0.069134
S.D.dependentvar
0.880592
S.E.ofregression
0.849607
Akaikeinfocriterion
2.628383
Sumsquaredresid
10.10565
Schwarzcriterion
2.724957
Loglikelihood
-19.02707
F-statistic
2.114022
Durbin-Watsonstat
0.160927
Prob(F-statistic)
0.168005
LOG(Y)=10.58560-0.280130LOG(X2)
R^2=
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
31
Sample:
19912010
Includedobservations:
20
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
7.963480
2.330952
3.416407
0.0031
LOG(X3)
1.789969
1.153763
1.551418
0.1382
R-squared
0.117945
Meandependentvar
11.56900
AdjustedR-squared
0.068942
S.D.dependentvar
0.832606
S.E.ofregression
0.803393
Akaikeinfocriterion
2.494694
Sumsquaredresid
11.61792
Schwarzcriterion
2.594267
Loglikelihood
-22.94694
F-statistic
2.406898
Durbin-Watsonstat
0.061851
Prob(F-statistic)
0.138206
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
32
Sample(adjusted):
19912009
Includedobservations:
11afteradjustments
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
11.43309
0.356896
32.03479
0.0000
LOG(X4)
0.054845
0.281895
0.194557
0.8501
R-squared
0.004188
Meandependentvar
11.39259
AdjustedR-squared
-0.106458
S.D.dependentvar
0.914023
S.E.ofregression
0.961446
Akaikeinfocriterion
2.922208
Sumsquaredresid
8.319398
Schwarzcriterion
2.994553
Loglikelihood
-14.07214
F-statistic
0.037852
Durbin-Watsonstat
0.068566
Prob(F-statistic)
0.850061
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
33
Sample:
19912010
Includedobservations:
20
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
11.41318
0.076964
148.2917
0.0000
LOG(X5)
-0.952219
0.096173
-9.901057
0.0000
R-squared
0.844869
Meandependentvar
11.56900
AdjustedR-squared
0.836251
S.D.dependentvar
0.832606
S.E.ofregression
0.336922
Akaikeinfocriterion
0.756710
Sumsquaredresid
2.043298
Schwarzcriterion
0.856283
Loglikelihood
-5.567098
F-statistic
98.03094
Durbin-Watsonstat
0.388073
Prob(F-statistic)
0.000000
可见,第1个式子的拟合优度最高,可确定为初始回归模型
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
19:
55
Sample:
19912010
Includedobservations:
16
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
24.32676
1.501484
16.20181
0.0000
LOG(X1)
3.744196
0.403281
9.284329
0.0000
LOG(X2)
0.028152
0.079633
0.353530
0.7294
R-squared
0.886143
Meandependentvar
11.51426
AdjustedR-squared
0.868626
S.D.dependentvar
0.880592
S.E.ofregression
0.319175
Akaikeinfocriterion
0.721207
Sumsquaredresid
1.324346
Schwarzcriterion
0.866067
Loglikelihood
-2.769657
F-statistic
50.58897
Durbin-Watsonstat
0.500512
Prob(F-statistic)
0.000001
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
20:
04
Sample:
19912010
Includedobservations:
20
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
25.48138
1.920268
13.26970
0.0000
LOG(X1)
3.817632
0.370658
10.29960
0.0000
LOG(X3)
-0.494597
0.493838
-1.001536
0.3306
R-squared
0.878171
Meandependentvar
11.56900
AdjustedR-squared
0.863838
S.D.dependentvar
0.832606
S.E.ofregression
0.307233
Akaikeinfocriterion
0.615059
Sumsquaredresid
1.604663
Schwarzcriterion
0.764419
Loglikelihood
-3.150588
F-statistic
61.26987
Durbin-Watsonstat
0.514257
Prob(F-statistic)
0.000000
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
20:
05
Sample(adjusted):
19912009
Includedobservations:
11afteradjustments
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
24.41519
1.211071
20.16000
0.0000
LOG(X1)
3.760349
0.349684
10.75356
0.0000
LOG(X4)
0.123257
0.076321
1.614987
0.1450
R-squared
0.935567
Meandependentvar
11.39259
AdjustedR-squared
0.919458
S.D.dependentvar
0.914023
S.E.ofregression
0.259399
Akaikeinfocriterion
0.366101
Sumsquaredresid
0.538302
Schwarzcriterion
0.474618
Loglikelihood
0.986442
F-statistic
58.07952
Durbin-Watsonstat
0.659393
Prob(F-statistic)
0.000017
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
20:
06
Sample:
19912010
Includedobservations:
20
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
18.75787
1.823338
10.28765
0.0000
LOG(X1)
2.147088
0.532763
4.030099
0.0009
LOG(X5)
-0.460338
0.141085
-3.262831
0.0046
R-squared
0.920665
Meandependentvar
11.56900
AdjustedR-squared
0.911332
S.D.dependentvar
0.832606
S.E.ofregression
0.247927
Akaikeinfocriterion
0.186118
Sumsquaredresid
1.044954
Schwarzcriterion
0.335478
Loglikelihood
1.138820
F-statistic
98.64071
Durbin-Watsonstat
0.395572
Prob(F-statistic)
0.000000
LOG
(1)LOG(5)的拟合优度最高,可确定为初始回归模型
DependentVariable:
LOG(Y)
Method:
LeastSquares
Date:
06/14/11Time:
20:
08
Sample:
19912010
Includedobservations:
16
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 论文 作业