发动机缸体外文翻译教学文案.docx
- 文档编号:7922069
- 上传时间:2023-01-27
- 格式:DOCX
- 页数:10
- 大小:25.67KB
发动机缸体外文翻译教学文案.docx
《发动机缸体外文翻译教学文案.docx》由会员分享,可在线阅读,更多相关《发动机缸体外文翻译教学文案.docx(10页珍藏版)》请在冰豆网上搜索。
发动机缸体外文翻译教学文案
发动机缸体
发动机缸体是发动机零件中结构较为复杂的箱体零件,其精度要求高,加工工艺复杂,且加工质量的好坏直接影响发动机整机性能,因此,它成为各发动机生产厂家所关注的重点零件之一。
1.发动机缸体的工艺特点
发动机缸体是发动机的基础零件和骨架,同时又是发动机总装配时的基准零
件。
缸体的作用是支承和保证活塞、连杆、曲轴等运动部件工作时的准确位置;保证发动机的换气、冷却和润滑;提供各种辅助系统、部件及发动机的安装。
1.1工艺特点
缸体为一整体铸造结构,其上部有4个缸套安装孔;缸体的水平隔板将缸体分成上下两部分;缸体的前端面从前到后排列有三个同轴线的凸轮轴安装孔和惰轮轴孔。
缸体的工艺特点是:
结构、形状复杂;加工的平面、孔多;壁厚不均,刚度低;加工精度要求高,属于典型的箱体类加工零件。
缸体的主要加工表面有顶面、主轴承座侧面、缸孔、主轴承孔及凸轮轴孔等,它们的加工精度将直接影响发动机的装配精度和工作性能,主要依靠设备精度、工夹具的可靠性和加工工艺的合理性来保证。
2.发动机缸体工艺方案设计原则和依据
工艺方案是工艺准备工作的总纲,是工艺规程设计和关键工艺装备设计的指导文件。
正确的工艺方案设计,有助于系统地运用新的科学技术成果和先进的生产经验,保证产品质量,改善劳动条件,提高工艺技术和工艺管理水平。
2.1工艺方案设计的原则
设计工艺方案应在保证产品质量的同时,充分考虑生产周期、成本和环境保护;根据本企业能力,积极采用国内外先进的工艺技术和装备,不断提高企业工艺水平。
发动机缸体机械加工工艺设计应遵循以下基本原则:
(1)加工设备选型原则加工设备选型采用刚柔结合的原则,加工设各以卧式加工中心为主,少量工序采用立式加工中心,关键工序一曲轴孔、缸孔、平衡轴孔加工采用高精度高速卧式加工中心,非关键工艺一上下前后四个平面的粗铣采用高效并有一定调整范围的专用机床加工;
(2)集中工序原则关键工序一机体缸孔、曲轴孔、平衡轴孔的精加工及缸盖结合面的精铣,采用集中在一道工序一次装夹完成全部加工内容的方案,以确保产品精度满足缸体关键品质的工艺能力和有关技术要求;
(3)全部夹具均采用液压夹具,夹紧元件、液压泵及液压控制元件采用德国或美国产优质可靠元器件;
(4)整线全部采用湿式加工,采用单机独立排屑,高精度关键加工工序的卧式加工中心采用恒温冷却并加装高精度高压双回路带旁通精过滤系统,加工中心全部带有高压内冷。
根据汽车发动机缸体的工艺特点和生产任务要求,发动机缸体机械加工自动生产线由卧式加工中心CWK500和CWK500D加工中心、专用铣/镗床、立式加工中心matec-30L等设备组成。
(1)顶底面及瓦盖止口面粗铣组合机床本机床为双面卧式专用铣床,采用移动工作台带动工件,机床采用进口西门子S7-200PLC系统控制,机床设独立电控柜,切削过程自动化完成,有自动和调整两种状态;
(2)高速卧式加工中心CWK500该加工中心可实现最大流量的湿加工,但由于设备自动排屑处理系统是通过位于托盘下的内置宽式排屑器而完成,该加工中心可以进行干加工;机床主轴转速6000r/min,快速进给速度38m/min;
(3)前后端面粗铣组合机床机床采用液压传动;控制系统采用进口西门子S7-200PLC系统控制,机床具有一定的柔性;
(4)专用机床TXK1500本机床由立式加工中心改造而成型,具备立式加工中心的特点及性能,该机床具有高强度、高耐磨度、高稳定性、高精度、高配置等优点;
(5)高速立式加工中心matec-30L该加工中心主轴最高转速9000r/min。
控制系统采用西门子公司SINUMERIK840D控制系统;
(6)高速卧式加工中心CWK500D主轴最高转速15000r/min。
2.2工艺方案设计的依据
影响发动机缸体零件的工艺方案设计因素是多方面的。
具体地说,可以从以下几个方面理解。
(1)产品对象、产品图样和有关技术文件根据发动机缸体的复杂程度、精度要求等采取相应的工艺措施。
生产对象为四缸汽车发动机缸体;
(2)产品的生产纲领、生产性质和生产类型该发动机缸体年生产纲领为40000万件;
(3)工作制度设备年有效工作日为320天,平均设备负荷率为80%,两班制,16小时/天。
3.发动机缸体机械加工工艺设计的主要内容
发动机缸体结构复杂,精度要求高,尺寸较大,是薄壁零件,有若干精度要求较高的平面和孔。
发动机缸体机械加工的工艺特点是:
主要是平面和孔的加工,加工平面一般采用刨、铣削等方法加工,加工孔主要采用镗削,加工小孔多用钻削。
由于缸体结构复杂,因此如何保证各表面的相互位置精度是加工中的一个重要问题。
3.1毛坯的选择
发动机缸体采用的材料一般是灰铸铁HT150、HT200、HT250,也有采用铸铝或钢板的,此发动机缸体采用高强度合金铸铁。
缸体在加工前进行时效处理,以消除铸件内应力和改善毛坯的力学性能。
提高毛坯精度,减少加工余量,是提高自动生产线系统生产率及加工质量的重要措施。
由于国外箱体类零件毛坯质量和精度较高,其生产线系统己实现了毛坯直接上线,既省去了毛坯检查装置,也节省了由于毛坯质量问题而浪费的加工工时,提高了综合效益。
因此,精化毛坯是提高生产率最有潜力的出路。
对于发动机缸体生产线,可在零件上线前粗铣六个面,去除大部分余量,便于零件直接上线。
3.2机械加工工艺基准的选择与加工
选择合理的加工工艺基准,直接关系到能否保证零件的加工质量。
一般地说,工艺基准可分为粗基准和精基准。
(1)粗基准对于上线的毛坯,其粗基准的选择尤为重要,如果粗基准选择不合理,会使加工余量分布不均匀,加工面偏移,造成废品。
在缸体生产线中,我们采用侧面为粗基准;
(2)精基准对于发动机缸体这种箱体零件来说,一般采用“一面两销”为全线的统一基准。
对于较长的自动生产线系统,由于定位销孔在使用过程中的磨损影响发动机缸体零件定位,因此,将定位销孔分为2-3段使用。
在缸体定位销孔的加工中,我们采用了以侧面、底面和主轴孔定位,在加工中心上加工。
3.3机械加工加工阶段的划分和工序的安排一个零件往往有许多表面需要加工,当然表面的加工精度是不同的。
加工精度较高的表面,往往要经过多次加工;而对于加工精度低的表面,只需要经过一两次就行了。
因此,拟订工艺顺序时,要抓住“加工精度高的表面”这个矛盾,合理安排工序和合理划分加工阶段。
安排工艺顺序的原则是:
先粗后精,先面后孔,先基准后其它。
在发动机缸体的机械加工中,同样应遵循这一原则。
(1)粗加工阶段在发动机缸体的机械加工过程中,安排粗加工工序,对毛坯全面进行粗加工,切去大部分余量,以保证生产效率;
(2)半精加工阶段在发动机缸体的机械加工中,为了保证一些重要表面的加工精度,安排一些半精加工工序,将精度和表面粗糙度要求中等的一些表面加工完成,而对要求高的表面进行半精加工,为以后的精加工做准备;
(3)精加工阶段对精度和表面粗糙度要求高的表面进行加工;
(4)次要小表面的加工如螺纹孔,可以在精加工主要表面后进行,一方面加工时对工件变形影响不大,同时废品率也降低;另外,如果主要表面出废品后,这些小表面就不必再加工了,从而避免浪费工时。
但是,如果小表面的加工很容易碰伤主要表面时,就应该把小表面加工放在主要表面的精加工之前;
(5)辅助工序也要妥善安排如检验工序,在零件粗加工阶段之后,关键工序加工前后,零件全部加工完毕后,都要适当安排。
对加工阶段进行划分,具有以下好处:
首先,可以在粗加工后采取措施消除工件内应力,保证精度;其次,精加工放在后面,不至于在运输过程中损坏工件己加工表面;再次,先粗加工各面,可以及早发现毛坯缺陷并及时处理,不会浪费工时。
不过对于一般小工件就不要分得很细。
3.4缸体的主要加工表面和辅助工序
缸体主要加工表面和辅助工序有:
(1)平面加工目前,铣削是发动机缸体平面加工的主要手段,国内铣削进给量一般为300-400mm/min,与国外铣削进给量2000-4000mm/min相比,相差甚远,有待于提高,因此,提高铣削进给量,缩短辅助时间,是提高生产效率的主要途径,发动机缸体精加工一些平面时的铣削进给量达到2399mm/min,大大提高了效率顶面的铣削是缸体加工中的一个关键工序,其平面度要求为0.02/145mm,表面粗糙度为Ra1.6um。
在缸体的加工中,采用侧面和主轴轴承孔定位,顶面、底面和中间瓦盖止口面同时加工,在加工中采用线外对刀装置,能较好地满足发动机缸体加工精度要求;
(2)一般孔系的加工一般孔系的加工仍采用传统的钻、扩、镗、铰、攻丝等工艺方法。
课题在设计具体的工艺方案时,采用涂层刀具、内冷却刀具等先进刀具,并采用大流量冷却系统,大大提高了切削速度,提高了生产率;
(3)深油孔加工传统的加工方法是采用麻花钻进行分级进给,其生产效率低,加工质量差。
在发动机缸体深油孔的加工中,采用枪钻工艺;
(4)三轴孔的加工三轴孔的加工为缸体孔系加工中精度要求高,工时长的限制性工序。
因此,工序安排、加工方法、刀具等都应特别注意。
合盖前加工,即缸体半圆孔和主轴承盖的荒加工,其主要目的是去除毛坯余量、释放应力,为后序加工做准备;在加工中心上加工曲轴孔时,采用双面镗孔,先在曲轴孔一端镗孔到1/2长度时,然后工作台回转180度,从另外一端再镗另一1/2长。
(5)缸孔的加工缸孔的加工是缸体机械加工中的关键工序之一,一般情况下,其加工工艺过程为粗镗、半精镗、精镗和珩磨。
为及早发现缸孔内壁的铸造缺陷,消除应力,应尽量提前粗镗缸孔;由于缸孔的结构特点不同,需采用珩磨工艺,以提高缸孔表面质量。
在大批量生产中,缸孔的珩磨一般采用多轴珩磨机或珩磨自动线。
在此我们采用珩磨自动线,由粗珩.精珩和检测三台设备组成;
(6)清洗清洗分为湿式清洗和干式清洗。
缸体机械加工自动生产线采用大流量湿式清洗;
(7)检测检测分在线检测和线外检测两种。
在发动机缸体的质量检测中,
根据实际情况采用线外检测,主要采用三坐标测量机对缸体进行综合测量,每200件抽查1-5件,每班抽查一件。
3.5缸体加工切削用量的选择
发动机缸体切削用量的选择包括切削速度、进给量和进给速度的选择。
由于加工中所使用的设备都是具有较高精度和刚度的机床和高速加工中心,为保证切削加工的效率,可以适当选择较大的切削用量。
发动机缸体的主要加工表面为平面和轴承孔、缸孔等孔的加工,而平面和轴承孔、缸孔的加工方式主要是铣削和镗削,因此这里讨论的切削用量的选择主要是铣削和镗削切削用量的选择。
(1)铣削量的选择铣削用量的选择直接关系到铣削效果的好坏。
一般地说,铣削用量的选择原则是:
端面铣刀铣削时首先应尽可能取较大的铣削深度和铣削宽度,然后尽可能选取较大的铣削速度。
在具体选择铣削用量时所涉及的因素很多,但总的来说,粗铣时工件余量大,加工要求低,主要考虑铣刀的耐用度;精铣时余量小,加工精度要求高,主要考虑加工质量的提高;在发动机缸体的铣削加工中,选用的机床为具有高刚度的高速机床,功率大,刚性好,因而选择了比较大的切削用量。
(2)镗削用量的选择镗削用量的选择根据粗、精加工工艺的不同而不同。
粗加工时,选用较大的切削深度,精加工时,选用较小的切削深度。
切削深度确定以后,尽可能选用较大的切削用量。
在切削深度和进给量选定以后,可在保证刀具合理耐用度的条件下,用计算或查表的方法来确定切削速度。
一般地,粗加工时,选择较低的切削速度,精加工时,选用较高的切削速度。
在发动机缸体的镗削加工中,选用的机床为具有高刚度的高速机床,功率大,刚性好;刀具为国外先进的刀具,质量高,刚性好,因而选择了比较大的切削用量。
4.小结
通过对发动机缸体的结构和工艺特点进行分析,论述了发动机缸体机械加工工艺方案设计的原则和依据以及切削用量的选择,并以高速铣削和调头镗孔为例,设计、分析了发动机缸体的高速铣削和调头镗孔工艺过程,及在加工中需要注意的问题。
Engineparts
Enginepartsintheengineblockisamorecomplexstructureofsparepartsbox,itshighprecision,processing,complexprocess,andtheprocessingqualitywillaffecttheoverallperformanceengine,soithasbecometheenginemanufacturer'sfocuspartsone.
Engineblockisthebasicenginepartsandskeleton,whenthegeneralassemblyofthebasecomponents.Cylinder'sroleissupportingandensuringthepiston,connectingrod,crankshaftandothermovingpartswork,theexactlocation;toensuretheengineventilation,coolingandlubrication;toprovideavarietyofauxiliarysystems,componentsandengineinstallation.
1.1TechnicalCharacteristics
Cylindercastforawholestructure,anditsupperpart4cylindermountinghole;cylinderstandardcylinderisdividedintoupperandlowerdivisionsintotwoparts;cylindertotherearofthefront-sidearrangementofthepreviousthreecoaxialmountingholeofthecamshaftandtheidleraxlehole.
Cylinderprocessfeaturesare:
thestructureofcomplexshape;processingplane,morethanholes;unevenwallthicknessandstiffnessislow;processingofhighprecisiontypicalofbox-typeprocessingpart.Themainprocessingofthesurfaceofcylinderblocktopsurface,themainbearingside,cylinderbore,themainandcamshaftbearingboreholesandsoon,theywilldirectlyaffectthemachiningccuracyoftheengineassemblyprecisionandperformance,mainlyrelyonprecisionequipment,industrialfixturesreliabilityandprocessingtechnologytoensurethereasonableness.
Technologyprogramisthepreparationofthemasterprocessistoprocessplanningandkeyprocessequipmentdesignguidancedocuments.Thecorrectprocessofprogramdesign,facilitatethesystematicapplicationofnewscientificandtechnologicalachievementsandadvancedproductionexperience,toensureproductquality,improveworkingconditions,andimproveprocesstechnologyandprocessmanagementlevel.
2.1Processdesignprinciples
DesignTechnologyprogramshouldbetoensureproductqualityatthesametime,givefullconsiderationtotheproductioncycle,costandenvironmentalprotection;basedontheenterprisesabilitytoactivelyadoptadvancedprocesstechnologyandequipment,andconstantlyenhancetheirleveloftechnology.
Engineblockmachiningprocessdesignshouldfollowthefollowingbasicprinciples:
(1)Theselectionofprocessingequipment,processingequipment,theprincipleofselectionadoptedtheprincipleofcombiningrigid-flexible,processingeachhorizontalmachiningcenterislocatedmainlysmalloperationswithverticalmachiningcenter,thekeyprocessacrankhole,cylinderhole,balancershaftholeHigh-speedprocessingofhigh-precisionhorizontalmachiningcenter,anupperandlowernon-criticalprocessesbeforeandafterthefour-dimensionalhigh-efficiencyroughmillingandhaveacertainadjustmentrangeofspecialmachineprocessing;
(2)focusonakeyprocessinprincipleprocessthebodycylinderbore,crankshafthole,BalanceShaftholesurfacefinishingandthecombinationofprecisionmillingcylinderhead,usingaprocessfocusedonasetupprogramtocompleteallprocessingelementsinordertoensureproductaccuracyThekeyqualityprocessestomeetthecylindercapacityandtherelevanttechnicalrequirements;
(3)Allfixturesareusedhydraulicclamp,clampingcomponents,hydraulicpumpsandhydrauliccontrolcomponentsusedinGermanyortheUnitedStatesproducinghighqualityandreliablecomponents;
(4)Thewholelineusedinallwetprocessing,usingstandaloneBTA,high-precisionmachiningprocessescriticalhorizontalmachiningcenterwithconstantcoolingandtoinstallhigh-precisionhigh-voltagedouble-circuitband-passfinefiltrationsystem,allwithhigh-pressureprocessingcenterinthecold.
Accordingtothetechnologicalcharacteristicsofautomobileenginecylinderblockandtheproductionmandate,theengineblockmachiningautomaticproductionlineiscomposedofhorizontalmachiningcenterCWK500andCWK500Dmachiningcenters,specialmilling/boringmachine,verticalmachiningcentersmatec-30Landotherappliances.
(1)topandbottom,andtilecoveredonlythecombinationofapertureroughmillingmachinededicatedtothismachinetodouble-sidedhorizontalmillingmachine,usingmovingtabledrivenparts,machinetoolsimportedSiemensS7-200PLCsystemcontrol,machinecontrolcabinetsetupanindependent,cuttingautomatetheprocessiscompletedandtwokindsofautomaticandadjustthestate;
(2)high-speedhorizontalmachiningcentermachiningcentercanberealizedCWK500themaximumflowofwetprocessing,butbecauseofequipment,automaticBTAtreatmentsystemthroughthebuilt-intrayunderthewide-typechipconveyorandthecompletionofthemachiningcentercanbedrypro
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 发动机 缸体 外文 翻译 教学 文案