七年级下册数学实数教案.docx
- 文档编号:781610
- 上传时间:2022-10-13
- 格式:DOCX
- 页数:19
- 大小:360.73KB
七年级下册数学实数教案.docx
《七年级下册数学实数教案.docx》由会员分享,可在线阅读,更多相关《七年级下册数学实数教案.docx(19页珍藏版)》请在冰豆网上搜索。
七年级下册数学实数教案
第六章实数
单元(章)教学计划
1、地位与作用:
本章<实数>是人教版七年级数学下册第六章内容。
学习算术平方根,平方根,立方根之后,为学习实数打下基础;由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。
运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。
因此,本章是今后学习根式运算、方程、函数等知识的重要基础。
2、目标与要求:
知识与技能
通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;会用计算器求算术平方根;使学生理解平方根的概念,了解平方与开平方的关系。
学会平方根的表示法和求非负数的平方根;进一步认识实数和数轴上的点一一对应蕴含着数形结合的思想,通过学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯
过程与方法
通过了解平方与开平方的关系,培养学生逆向思维能力;能对具体情景中的数学信息作出合理的解释和推断、解决问题,能由实际问题抽象成数学问题,让学生讨论、类比提出自己的见解,并在探索的同时较好的获得新知;经历在具体例子中抽象出概念的过程,培养学习的主动性,提高数学运算能力。
情感态度与价值观
通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
3、重点与难点:
重点:
算术平方根、平方根、立方根的概念和运算;实数的认识。
难点:
算术平方根与平方根联系与区别;有理数与无理数的区别。
4、教法与学法:
教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.
5、活动步骤:
一、创设导入;二、探索归纳;三、应用;四、练习;五、课堂总结;六、布置作业;
6、时间安排:
6.1平方根3课时
6.2立方根1课时
6.3实数2课时
复习与小结2课时
6.1.1平方根
第一课时
【教学目标】
知识与技能:
通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;
过程与方法:
通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:
通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:
算术平方根的概念和求法。
教学难点:
算术平方根的求法。
教具准备:
三块大小相等的正方形纸片;学生计算器。
教学方法:
自主探究、启发引导、小组合作
【教学过程】
一、情境引入:
问题:
学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?
二、探索归纳:
1.探索:
学生能根据已有的知识即正方形的面积公式:
边长的平方等于面积,求出正方形画布的边长为。
接下来教师可以再深入地引导此问题:
如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢?
学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:
上面的问题它们有共同点吗?
它们的本质是什么呢?
这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:
⑴算术平方根的概念:
一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。
⑵算术平方根的表示方法:
a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。
三、应用:
例1、求下列各数的算术平方根:
⑴⑵⑶⑷⑸
解:
⑴因为所以的算术平方根是,即;
⑵因为,所以的算术平方根是,即;
⑶因为,所以的算术平方根是,即;
⑷因为,所以的算术平方根是,即;
⑸因为,所以的算术平方根是,即。
注:
①根据算术平方根的定义解题,明确平方与开平方互为逆运算;
②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;
③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:
你能求出-1,-36,-100的算术平方根吗?
任意一个负数有算术平方根吗?
归纳:
一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
即:
只有非负数有算术平方根,如果有意义,那么。
注:
且这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。
例2、求下列各式的值:
(1)
(2)(3)(4)
分析:
此题本质还是求几个非负数的算术平方根。
解:
(1)
(2)(3)(4)
例3、求下列各数的算术平方根:
⑴⑵⑶⑷
解:
(1)因为,所以;
⑵因为,所以;
⑶因为,所以;
⑷因为,所以。
根据学生的学习能力和理解能力可进行如下总结:
1、由,,可得
2、由,,可得
教师需强调时对两种情况都成立。
四、随堂练习:
1、算术平方根等于本身的数有_____。
2、求下列各式的值:
,,,
3、求下列各数的算术平方根:
,,,,
4、已知求的值。
五、课堂小结
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
六、布置作业
课本第47页习题6.1第1、2题
教学反思
6.1.2平方根
第2课时
【教学目标】
知识与技能:
会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。
过程与方法:
通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。
用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。
情感态度与价值观:
通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。
教学重点:
①认识无限不循环小数的特点,会估算一些数的算术平方根。
②会用算术平方根的知识解决实际问题。
教学难点:
认识无限不循环小数的特点,会估算一些数的算术平方根。
教学方法:
自主探究、启发引导、小组合作
教学过程:
一、通过实验引入:
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。
你知道这个大正方形的边长是多少吗?
设大正方形的边长为,则,由算术平方根的意义可知,
所以大正方形的边长为。
二、讨论的大小:
由上面的实验我们认识了,它的大小是多少呢?
它所表示的数有什么特征呢?
下面我们讨论的大小。
因为<<,所以<<.
因为,,所以<<。
因为,,所以<<
因为,,所以<<
……
如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。
=……
注:
这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。
=……,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率π也是一个无限不循环小数。
三、用计算器求算术平方根:
大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值。
例1、用计算器求下列各式的值:
;(精确到
解:
(1)依次按键,显示:
56.所以
(2)依次按键2=,显示:
,这是一个近似值。
所以
注:
不同品牌的计算器,按键的顺序可能有所不同。
四、探索规律:
(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?
…
…
…
…
(2)用计算器计算(结果保留4个有效数字),并利用你发现的规律写出,,的近似值。
你能根据的值求出的值吗?
学生通过计算器可求出
(1)的答案,依次是:
。
从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。
由可得,由的值不能求出的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出。
此题学生可独立完成。
五、实际应用:
例1、小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为
的长方形纸片,使它的长与宽之比为:
,不知道能否裁出来,正在发愁,小明见了说:
“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。
”你同意小明的说法吗?
小丽能否用这块纸片裁出符合要求的纸片吗?
分析:
学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片。
通过计算和讲解纠正这种错误的认识。
解:
设长方形纸片的长为,宽为。
根据边长与面积的关系可得:
,,,
∴长方形纸片的长为。
因为﹥,所以﹥,从而﹥
即长方形纸片的长应该大于,而已知正方形纸片的边长只有,这样长方形纸片的长将大于正方形纸片的边长。
答:
不能同意小明的说法。
小丽不能用这块正方形纸片裁出符合要求的长方形纸片。
六、随堂练习:
1.用计算器求下列各式的值:
(1)
(2)(3)(精确到)
2、估计大小:
(1)与
(2)与
3、已知,求,,,的值。
七、课堂小结
1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;
2、利用计算器可以求出任意正数的算术平方根的近似值;
3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
4、怎样的数是无限不循环小数?
八、布置作业
课本第47页习题6.1第3、5题
教学反思:
6.1.3平方根
第三课时
【教学目标】
知识与技能
了解平方根的概念,会用根号表示正数的平方根;了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根
过程与方法
通过学习平方根,进一步建立数感和符号感,发展抽象思维。
通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力。
情感、态度与价值观
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。
教学重点:
了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。
教学难点:
平方根与算术平方根的区别和联系。
教学方法:
自主探究、启发引导、小组合作
教学过程
一、情境导入
如果一个数的平方等于9,这个数是多少?
讨论:
这样的数有两个,它们是3和-3.注意中括号的作用.
又如:
,则x等于多少呢?
二、探索归纳:
1、平方根的概念:
如果一个数的平方等于a,那么这个数就叫做a的平方根.即:
如果=a,那么x叫做a的平方根.
求一个数的平方根的运算,叫做开平方.
例如:
3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.
2、观察:
课本P73的图14.1-2.
图14.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.
例4求下列各数的平方根。
(1)100
(2)(3)0.25
3、按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?
0的平方根是多少?
负数有平方根吗?
一个是正数有两个平方根,即正数进行开平方运算有两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 实数 教案