单相桥式整流电路设计.docx
- 文档编号:7727517
- 上传时间:2023-01-26
- 格式:DOCX
- 页数:11
- 大小:25.39KB
单相桥式整流电路设计.docx
《单相桥式整流电路设计.docx》由会员分享,可在线阅读,更多相关《单相桥式整流电路设计.docx(11页珍藏版)》请在冰豆网上搜索。
单相桥式整流电路设计
单相桥式整流电路设计
《电力电子技术》课程设计任务书
一、设计课题一
单相桥式整流电路设计
二、设计要求
1、单相桥式相控整流的设计要求为:
负载为感性负载,L=600H,R=500欧姆.
2、技术要求:
(1).电网供电电压为单相220V;
(2).电网电压波动为+5%--10%;
(3).输出电压为0~200V
在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。
在整个设计中要注意培养独立分析和独立解决问题的能力
前言
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景
第1章方案的选择
单相桥式整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。
下面分析两种单相桥式整流电路在带电感性负载的工作情况。
单相半控整流电路的优点是:
线路简单、调整方便。
弱点是:
输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。
单相半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相全控桥式整流电路。
根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。
1.1元器件的选择
1.1.1晶闸管的介绍
1)晶闸管的结构
晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。
晶闸管有螺栓型和平板型两种封装
引出阳极A、阴极K和门极(或称栅极)G三个联接端。
对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便平板型封装的晶闸管可由两个散热器将其夹在中间
内部结构:
四层三个结如图1.1
2.晶闸管的工作原理图
晶闸管由四层半导体(P1、N1、P2、N2)组成,形成三个结J1(P1N1)、J2(N1P2)、J3(P2N2),并分别从P1、P2、N2引入A、G、K三个电极,如图1.2(左)所示。
由于具有扩散工艺,具有三结四层结构的普通晶闸管可以等效成如图1.2(右)所示的两个晶闸管T1(P1-N1-P2)和(N1-P2-N2)组成的等效电路。
1.1.2可关断晶闸管
可关断晶闸管简称GTO。
可关断晶闸管的结构
GTO的内部结构与普通晶闸管相同,都是PNPN四层结构,外部引出阳极A、阴极K和门极G如图1.3。
和普通晶闸管不同,GTO是一种多元胞的功率
集成器件,内部包含十个甚至数百个共阳极的小GTO元胞,这些GTO元胞的阴极和门极在器件内部并联在一起,使器件的功率可以到达相当大的数值。
1)可关断晶闸管的工作原理
GTO的导通机理与SCR是完全一样的。
GTO一旦导通之后,门极信号是可以撤除的,在制作时采用特殊的工艺使管子导通后处于临界饱和,而不像普通晶闸管那样处于深饱和状态,这样可以用门极负脉冲电流破坏临界饱和状态使其关断。
GTO在关断机理上与SCR是不同的。
门极加负脉冲即从门极抽出电流(即抽出饱和导通时储存的大量载流子),强烈正反馈使器件退出饱和而关断。
1.1.3晶闸管的派生器件
在晶闸管的家族中,除了最常用的普通型晶闸管之外,根据不同的的实际需要,珩生出了一系列的派生器件,主要有快速晶闸管(FST)、双向晶闸管(TRIAL)、可关断晶闸管(GTO)、逆导晶闸管、(RCT)和光控晶闸管。
可关断晶闸管具有普通晶闸管的全部优点,如耐压高,电流大等。
同时它又是全控型器件,即在门极正脉冲电流触发下导通,在负脉冲电流触发下关断。
故我们选择可关断晶闸管。
1.2整流电路
我们知道,单相整流器的电路形式是各种各样的,整流的结构也是比较多的。
因此在做设计之前我们主要考虑了以下几种方案:
方案1:
单相桥式半控整流电路
对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!
如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期为ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。
所以必须加续流二极管,以免发生失控现象。
方案2:
单相桥式全控整流电路
电路简图如下:
图1.5
此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
综上所述,针对他们的优缺点,我们采用方案二,即单相桥式全控整流电路。
第2章辅助电路的设计
2.1驱动电路的设计
2.1.1触发电路的论证与选择
1)单结晶体管的工作原理
单结晶体管原理单结晶体管(简称UJT)又称基极二极管,它是一种只有PN结和两个电阻接触电极的半导体器件,它的基片为条状的高阻N型硅片,两端分别用欧姆接触引出两个基极b1和b2。
在硅片中间略偏b2一侧用合金法制作一个P区作为发射极e。
其结构,符号和等效电如图2.1所示。
2)单结晶体管的特性
从图一可以看出,两基极b1和b2之间的电阻称为基极电阻。
Rbb=rb1+rb2
式中:
Rb1――第一基极与发射结之间的电阻,其数值随发射极电流ie而变化,rb2为第二基极与发射结之间的电阻,其数值与ie无关;发射结是PN结,与二极管等效。
若在两面三刀基极b2,b1间加上正电压Vbb,则A点电压为:
VA=[rb1/(rb1+rb2)]vbb=(rb1/rbb)vbb=ηVbb
式中:
η――称为分压比,其值一般在0.3―0.85之间,如果发射极电压VE由零逐渐增加,就可测得单结晶体管的伏安特性,见图2.2:
(1)当Ve〈ηVbb时,发射结处于反向偏置,管子截止,发射极只有很小的漏电流Iceo。
(2)当Ve≥ηVbb+VDVD为二极管正向压降(约为0.7V),PN结正向导通,Ie显著增加,rb1阻值迅速减小,Ve相应下降,这种电压随电流增加反而下降的特性,称为负阻特性。
管子由截止区进入负阻区的临界P称为峰点,与其对应的发射极电压和电流,分别称为峰点电压Ip和峰点电流Ip。
Ip是正向漏电流,它是使单结晶体管导通所需的最小电流,显然Vp=ηVbb。
(3)随着发射极电流Ie的不断上升,Ve不断下降,降到V点后,Ve不再下
降了,这点V称为谷点,与其对应的发射极电压和电流,称为谷点电压Vv和谷点电流Iv。
(4)过了V后,发射极与第一基极间半导体内的载流子达到了饱和状态,所以uc继续增加时,ie便缓慢的上升,显然Vv是维持单结晶体管导通的最小发射极电压,如果Ve〈Vv,管子重新截止。
单结晶体管的主要参数
①基极间电阻Rbb发射极开路时,基极b1,b2之间的电阻,一般为2-10千欧,其数值随温度的上升而增大。
②分压比η由管子内部结构决定的参数,一般为0.3--0.85。
③eb1间反向电压Vcb1b2开路,在额定反向电压Vcb2下,基极b1与发射极e之间的反向耐压。
④反向电流Ieob1开路,在额定反向电压Vcb2下,eb2间的反向电流。
⑤发射极饱和压降Veo在最大发射极额定电流时,eb1间的压降。
⑥峰点电流Ip单结晶体管刚开始导通时,发射极电压为峰点电压时的发射极电流。
2.1.2触发电路
晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。
触发电路对其产生的触发脉冲要求:
①触发信号可为直流、交流或脉冲电压。
②触发信号应有足够的功率(触发电压和触发电流)。
③触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
④触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。
1)单结晶体管触发电路
电路图如图2.3(a)所示。
2)单结晶体管自激震荡电路
从图2.3(a)可知,经D1-D2整流后的直流电源UZ一路径R2、R1加在单结晶体管两个基极b1、b2之间,另一路通过Re对电容C充电,发射极电压ue=uc按指数规律上升。
Uc刚冲点到大于峰点转折电压Up的瞬间,管子e-b1间的电阻突然变小,开始导通。
电容C开始通过管子e-b1迅速向R1放电,由于放电回路电阻很小,故放电时间很短。
随着电容C放电,电压Ue小于一定值,管子BT又由导通转入截止,然后电源又重新对电容C充电,上述过程不断重复。
在电
容上形成锯齿波震荡电压,在R1上得到一系列前沿很陡的触发尖脉冲us,如图
2.3(b)所示其震荡频率为
f=1/T=1/ReCLn(1/1-η)
式中η=0.3~0.9是单结晶体管的分压比。
即调节Re,可调节振荡频率2.1.3同步电源步电压又变压器TB获得,而同步变压器与主电路接至同一电源,故同步电压于主电压同相位、同频率。
同步电压经桥式整流、稳压管DZ削波为梯形波uDZ,而削波后的最大值UZ既是同步信号,又是触发电路电源.当UDZ过零时,电容C经e-b1、R1迅速放电到零电压.这就是说,每半周开始,电容C都从零开始充电,进而保证每周期触发电路送出第一个脉冲距离过零的时刻(即控制角α)一致,实现同步.
2.1.4移相控制
当Re增大时,单结晶体管发射极充电到峰点电压Up的时间增大,第一个脉冲出现的时刻推迟,即控制角α增大,实现了移相。
2.1.5脉冲输出
触发脉冲ug由R1直接取出,这种方法简单、经济,但触发电路与主电路有直接的电联系,不安全。
对于晶闸管串联接法的全控桥电路无法工作。
所以一般采用脉冲变压器输出。
2.2保护电路的设计
2.2.1保护电路的论证与选择
电力电子系统在发生故障时可能会发生过流、过压,造成开关器件的永久性损坏。
过流、过压保护包括器件保护和系统保护两个方面。
检测开关器件的电流、电压,保护主电路中的开关器件,防止过流、过压损坏开关器件。
当输出电压或输入电流超过允许值时,借助整流触发控制系统使整流桥短时内工作于有源逆变工作状态,从而抑制过电压或过电流的数值。
2.2.2过电流保护
当电力电子变流装置内部某些器件被击穿或短路;驱动、触发电路或控制电路发生故障;外部出现负载过载;直流侧短路;可逆传动系统产生逆变失败;以及交流电源电压过高或过低;均能引起装置或其他元件的电流超过正常工作电流,即出现过电流。
因此,必须对电力电子装置进行适当的过电流保护。
采用快速熔断器作过电流保护,其接线图(见图2.4)。
A型熔断器
特点:
是熔断器与每一个元件串连,能可靠的保护每一个元件。
B型熔断器
特点:
能在交流、直流和元件短路时起保护作用,其可靠性稍有降低C型熔断器
特点:
直流负载侧有故障时动作,元件内部短路时不能起保护作用
对于第二类过流,即整流桥负载外电路发生短路而引起的过电流,则应当采用电子电路进行保护。
常见的电子保护原理图如2.9所示
2.3过压保护
设备在运行过程中,会受到由交流供电电网进入的操作过电压和雷击过电压的侵袭。
同时,设备自身运行中以及非正常运行中也有过电压出现。
过电压保护的第一种方法是并接R-C阻容吸收回路,以及用压敏电阻或硒堆等非线性元件加以抑制。
见图2.5和图2.6
过电压保护的第二种方法是采用电子电路进行保护。
常见的电子保护原图如图2.7所示:
2.4电流上升率、电压上升率的抑制保护
1)电流上升率di/dt的抑制
。
如下图2.8所示:
2)电压上升率dv/dt的抑制
如图2.9所示:
第3章主体电路的设计
3.1主要电路原理及说明
当负载由电阻和电感组成时称为阻感性负载。
单相桥式整流电路带阻感性负载的电路如图5.1所示。
由于电感储能,而且储能不能突变因此电感中的电流不能突变,即电感具有阻碍电流变化的作用。
当流过电感中的电流变化时,在电感两端将产生感应电动势,引起电压降UL
负载中电感量的大小不同,整流电路的工作情况及输出Ud、id的波形具有不同的特点。
当负载电感量L较小(即负载阻抗角φ),控制角α〉φ时,负载上的电流不连续;当电感L增大时,负载上的电流不连续的可能性就会减小;当电感L很大,且ωLdRd示时,这种负载称为大电感负载。
此时大电感阻止
负载中电流的变化,负载电流连续,可看作一条水平直线。
各电量的波形图如图
3.1所示。
在电源电压u2正半周期间,晶闸管T1、T2承受正向电压,若在ωt=α时触发,T1、T2导通,电流经T1、负载、T2和Tr二次形成回路,但由于大电感的存在,u2过零变负时,电感上的感应电动势使T1、T2继续导通,直到T3、T4被触发时,T1、T2承受反向电压而截止。
输出电压的波形出现了负值部分。
在电源电压u2负半周期间,晶闸管T3、T4承受正向电压,在ωt=α+π时触发,T3、T4导通,T1、T2反向则制,负载电流从T1、T2中换流至T3、T4中。
在ωt=2π时,电压u2过零,T3、T4因电感中的感应电动势一直导通,直到下个周期T1、T2导通时,T3、T4因加反向电压才截止。
值得注意的是,只有当α〈=π/2时,负载电流才连续,当α〉π/2时,负载电流不连续,而且输出电压的平均值均接近于零,因此这种电路控制角的移相范围是0―π/2。
3.2电感负载可控整流电路
3.2.1单相全控桥式整流电路
在生产实践中,除了电阻性负载外,最常见的负载还有电感性负载,如电动机的励磁绕组,整流电路中串入的滤波电抗器等。
为了便于分析和计算,在电路图中将电阻和电感分开表示。
当整流电路带电感性负载时,整流工作的物理过程和电压、电流波形都与带电阻性负载时不同。
因为电感对电流的变化有阻碍作用,即电感元件中的电流
图3.1
负载电流连续时,整流电压平均值可按下式计算:
И
Ud1
2U2sintd(t)22
U2cos0.9U2cos
输出电流波形因电感很大,平波效果很好而呈一条水平线。
两组晶闸管轮流导电,一个周期中各导电180°,且与α无关,变压器二次绕组中电流i2的波形是对称的正、负方波。
负载电流的平均值Id和有效值I相等,其波形系数为1。
在这种情况下:
IdV
IV
V1IdIdId222VIdIdId222
当α=0°时,Ud=0.9U2;
当α=90°时,Ud=0,其移相范围为90°。
晶闸管承受的最大正、反向电压都是。
流过每个晶闸管的电流平均值和有效值分别
3.3主电路的设计
3.3.2原理图分析
该电路主要由四部分构成,分别为电源,过电保护电路,整流电路和触发电路构成。
输入的信号经变压器变压后通过过电保护电路,保证电路出现过载或短路故障时,不至于伤害到晶闸管和负载。
在电路中还加了防雷击的保护电路。
然后将经变压和保护后的信号输入整流电路中。
整流电路中的晶闸管在触发信号的作用下动作,以发挥整流电路的整流作用。
3.4主要元器件的说明
由于单相桥式全控整流带电感性负载主电路主要元件是晶闸管,所以选取元件时主要考虑晶闸管的参数及其选取原则。
3.4.1晶闸管的主要参数如下:
①额定电压UTn
通常取UDRM和URRM中较小的,再取靠近标准的电压等级作为晶闸管型的额定
电压。
在选用管子时,额定电压应为正常工作峰值电压的2~3倍,以保证电路的工作安全。
晶闸管的额定电压UTnminUDRM,URRM
UTn≥(2~3)UTM(3.4.1)
UTM:
工作电路中加在管子上的最大瞬时电压
②额定电流IT(AV)
IT(AV)又称为额定通态平均电流。
其定义是在室温40°和规定的冷却条件下,
元件在电阻性负载流过正弦半波、导通角不小于170°的电路中,结温不超过额定结温时,所允许的最大通态平均电流值。
将此电流按晶闸管标准电流取相近的电流等级即为晶闸管的额定电流。
要注意的是若晶闸管的导通时间远小于正弦波的半个周期,即使正向电流值没超过额定值,但峰值电流将非常大,可能会超过管子所能提供的极限,使管子
由于过热而损坏。
在实际使用时不论流过管子的电流波形如何、导通角多大,只要其最大电流有效值ITM≤ITn,散热冷却符合规定,则晶闸管的发热、温升就能限制在允许的
范围。
ITn:
额定电流有效值,根据管子的IT(AV)换算出,
IT(AV)、ITMITn三者之间的关系:
ITn/2(Imsint)2d(t)Im/20.5Im(3.4.2)0
IT(AV)1/2Imsintd(t)Im/0.318Im(3.4.3)0
波形系数:
有直流分量的电流波形,其有效值I与平均值Id之比称为该波形的波形系数,用Kf表示。
KfI(3.4.2)Id
额定状态下,晶闸管的电流波形系数
KfITn
IT(AV)21.57(3.4.6)2U22167V236V考虑到2倍裕量,取500V.晶闸管承受最大电压为UTM
晶闸管的选择原则:
Ⅰ、所选晶闸管电流有效值ITn大于元件在电路中可能流过的最大电流有
效值。
Ⅱ、选择时考虑(1.5~2)倍的安全余量。
即
ITn=1.57IT(AV)=(1.5~2)ITM
IT(AV)≥(1.5~2)TM
1.57(3.4.7)
因为IT=I/2,则晶闸管的额定电流为ITAV=12.5A(输出电流的有效值为最小值,所以该额定电流也为最小值)考虑到2倍裕量,取25A.即晶闸管的额定电流至少应大于25A.
在本次设计中我选用4个KP20-4的晶闸管.
Ⅲ、若散热条件不符合规定要求时,则元件的额定电流应降低使用。
③通态平均管压降UT(AV)。
指在规定的工作温度条件下,使晶闸管导通的正
弦波半个周期内阳极与阴极电压的平均值,一般在0.4~1.2V。
④维持电流IH。
指在常温门极开路时,晶闸管从较大的通态电流降到刚好能
保持通态所需要的最小通态电流。
一般IH值从几十到几百毫安,由晶闸管电
流容量大小而定。
⑤门极触发电流Ig。
在常温下,阳极电压为6V时,使晶闸管能完全导通所
需的门极电流,一般为毫安级。
⑥断态电压临界上升率du/dt。
在额定结温和门极开路的情况下,不会导致晶闸管从断态到通态转换的最大正向电压上升率。
一般为每微秒几十伏。
⑦通态电流临界上升率di/dt。
在规定条件下,晶闸管能承受的最大通态电流上升率。
若晶闸管导通时电流上升太快,则会在晶闸管刚开通时,有很大的电流集中在门极附近的小区域内,从而造成局部过热而损坏晶闸管。
3.4.3变压器的选取
根据参数计算可知:
变压器应选变比为1.5,容量至少为22.5VA。
3.5性能指标分析:
整流电路的性能常用两个技术指标来衡量:
一个是反映转换关系的用整流输出电压的平均值表示;另一个是反映输出直流电压平滑程度的,称为纹波系数。
1)整流输出电压平均值
Ud=12U2sintdt=22
U2cos=0.9U2cos(3.5.1)
2)纹波系数
纹波系数Kr用来表示直流输出电压中相对纹波电压的大小,即
KrULrUd2UdUd22
.设计总结
通过单相全控桥式整流电路的设计,使我加深了对整流电路的理解,让我对电力电子该课程产生了浓烈的兴趣。
整流电路的设计方法多种多样,且根据负载的不同,又可以设计出很多不同的电路。
其中单相全控桥式整流电路其负载我们用的多的主要是电阻型、带大电感型,接反电动势型。
它们各自有自己的优点。
对于一个电路的设计,首先应该对它的理论知识很了解,这样才能设计出性能好的电路。
整流电路中,开关器件的选择和触发电路的选择是最关键的,开关器件和触发电路选择的好,对整流电路的性能指标影响很大。
这次的课程设计是我收获最大的一次,虽然中途遇到了不少困难,但还是被我逐步解决了。
通过这次课程设计我对于文档的编排格式有了一定的掌握,这对于以后的毕业设计及工作需要都有很大的帮助,在完成课程设计的同时我也在复习一遍电力电子这门课程,把以前一些没弄懂的问题这次弄明白了很多。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单相 整流 电路设计