环境工程专业英语文献中英双语版.docx
- 文档编号:7715344
- 上传时间:2023-01-26
- 格式:DOCX
- 页数:22
- 大小:269.97KB
环境工程专业英语文献中英双语版.docx
《环境工程专业英语文献中英双语版.docx》由会员分享,可在线阅读,更多相关《环境工程专业英语文献中英双语版.docx(22页珍藏版)》请在冰豆网上搜索。
环境工程专业英语文献中英双语版
Treatmentofgeothermalwatersforproductionof
industrial, agriculturalordrinkingwater
Darrell L.Gallup∗
Chevron Corporation,Energy TechnologyCompany,3901 Briarpark Dr.,Houston,Texas77042,USA
Received14March 2007;accepted16July2007
Availableonline 12 September2007
Abstract
A conceptualstudyhas beencarriedoutto convert geothermalwaterandcondensateintoa valuable industrial,agriculturalor drinkingwaterresource.Laboratoryandfieldpilottest studieswereusedforthe conceptual designs andpreliminarycostestimates,referredto treatment facilitieshandling750kg/sofgeothermalwaterand350kg/sof steamcondensate. Theexperiments demonstrated that industrial,agriculturaland drinkingwater standardscouldprobablybe met byadoptingcertainoperatingconditions.Sixdifferenttreatmentswereexamined.Unitprocessesfor geothermalwater/condensatetreatmentincludedesilication ofthewaters toproduce marketable minerals,removalofdissolvedsolidsbyreverseosmosisor evaporation,removalofarsenicbyoxidation/precipitation,andremovalofboronbyvariousmethodsincludingion exchange.Thetotal projectcostestimates,withanaccuracy ofapproximately±25%,ranged from US$10to78millionin capital cost,with anoperationandmaintenance(orproduct)costrangingfromUS$ 0.15 to2.73m−3 oftreatedwater.
©2007CNR.Published by ElsevierLtd. All rightsreserved.
Keywords:
Geothermalwatertreatment; Waterresources;Desilication;Arsenic;Boron
1.Introduction
With the world enteringanageofwatershortages andaridfarming land,it is increasinglyimportant thatwe findways ofrecyclingwastewater. Theoil, gas andgeothermalindustries,forexample,extractmassiveamountsofbrine andwaterfromthesubsurface,mostofwhich areinjected backintoundergroundformations. Holisticapproachesto watermanagementarebeingadoptedevermorefrequently,andproducedwaterisnow beingconsideredasapotential resource.In theoiland gasarena,attemptshave beenmadeto convert producedwaterfordrinking supplyorotherreuses(Doranetal.,1998).Turningoilfield-producedwaterintoavaluable resourceentails anunderstandingoftheenvironmental andeconomicimplications,andofthetechniquesrequiredtoremove dissolvedorganic andinorganiccomponents fromthewaters.Treatmentsofgeothermalwaterandcondensateforbeneficialuse,on the other hand,involve theremoval ofinorganic componentsonly.
Wehave explored the technicalandeconomicfeasibilityofreusing watersandsteamcondensatesfromexisting and future geothermalpowerplants.Produced geothermal fluids,especially inaridclimates,should beviewedasvaluableresources forindustryandagriculture,aswellasfordrinking watersupplies.This paperpresentstheresults oflaboratoryandfieldpilotstudiesdesignedtoconvertgeothermal-producedfluidsintobeneficiallyusablewater.Thepreliminaryeconomics ofseveralwatertreatmentstrategies are alsoprovided.
2.Designlayout
Thelayoutforthe treatment strategies(unitsofoperation) havebeen designedspecificallyforanominal50Mwegeothermalpower plantlocatedinanarid climateof thewesternhemisphere,hereafterreferredto asthetest plant. Theaverageconcentrationofconstituentsintheproduced wateris shownin Table 1.Theamountofspent waterfromthetest flashplantis ∼750kg/s.The potentialamountofsteamcondensatethatcouldbe producedat theplant is∼350kg/s. Table 1includesthecompositionofthesteamcondensatederived fromwelltests.The sixtreatmentcases consideredinthestudyaregiven in Table2, togetherwithproductflowsandunitoperationsoftreatment.Fig.1providessimplifiedschematic layoutsoftheunitoperationsforeachcase.
3.Evaluationoftreatmentoptions
Inthis sectionthevariousoperationsconsideredforeach casearedescribed.
3.1.Arsenicremoval
Thetechniquesconsideredviable forremovingtracesofarsenic (As)fromcondensateor fromwaterareozoneoxidationfollowedbyironco-precipitationor catalyzedphoto-oxidationprocesses (Khoeetal.,1997).Otherprocessesforextracting Asfrom geothermal waters(e.g. RothbaumandAnderton,1975;Umeno and Iwanaga,1998;Pascuaetal.,2007)havenot beenconsideredin thepresentstudy.Inthecaseofthetestplant,ozone (O3)would begeneratedon-site using parasitic power,air and corona-dischargeultra-violet(UV) lamps,andironinthe formofferricsulfate[Fe2(SO4)3]orferric chloride(FeCl3) thatwould bedeliveredtothegeothermal plant. Thephoto-oxidationprocessesconsist oftreatingthecondensateor waterwithFe2+intheformofferrous sulfate(FeSO4)orferrouschloride(FeCl2), or with SO2photoabsorbers.Thelatteris generated fromthe oxidationofH2Sinturbineventgas (KitzandGallup, 1997).
The photo-oxidation processconsists ofspargingair through thephoto- adsorber-treatedfluid,and thenirradiating itwithUVlampsor exposing it tosunlighttooxidizeAs3+toAs5+. Inthe Fephoto-oxidation mode,theFe2+ isoxidizedtoFe3+, which notonlycatalyzestheoxidationreaction, but alsoco-precipitates theAs.In the SO2photo-oxidationmode,afteroxidizingtheAs,FeCl3or Fe2(SO4)3isadded tothewatertoprecipitate the As5+asascorodite-likemineral
Table1
Approximategeothermalwaterandsteamcondensatecompositions assumedinthestudy
aTotaldissolved solids.
Table 2
Summaryofthesixcasesof geothermalfluidtreatment to producemarketablewater
aOn treatmentofwater,claysareproducedat a rate of7.4ton/h.
(FeAsO4·2H2O).In thelaboratoryand fieldpilottests, thephoto-absorberand UVdosages werevaried to decreasetheAsconcentrationingeothermalfluidstobelowthedetection limit of2ppb (Simmonsetal.,2002). ResidualAsinthe precipitatemay beslurry-injectedintoawaterdisposal wellor fixed/stabilized forland disposaltomeet UnitedStates EnvironmentalProtection Agency(USEPA)ToxicityCharacterizationLeachProcedure(TCLP)limitsusingspecialcementformulations (Allen,1996).
3.2. Ionexchange
Strong-baseanion exchangeresins havebeenshowntoremovetracesofAs in geothermalfluids providedthatthe amorphoussilicais decreasedbelow itssaturationpointorthe waterstabilized againstsilicascalingbyacidification.Theion exchangealternativetoAsremoval byoxidation/precipitationhasprovensuccessfulinreducingtheconcentrationsofthis elementto belowthelimitssetfordrinking waterstandards.Aspart ofthepresentstudy,laboratoryandfieldcolumnartestsweresuccessfully conductedwith geothermal hotspringwatercontaining30ppmAs.Pre-oxidation of As3+is requiredtoachieveacceptableAsremovalby ionexchange. Inthesecolumnartests, NaOClandH2O2wereusedtopre-treatthehotspringwatertooxidizeAs3+toAs5+.Chloride-richwater,whichhadbeen treatedwithlime (CaOH2)andfilteredto reduceamorphous silicato wellbelowitssaturationpoint,successfullyregenerated the resin.In thefield,andforsimplicityof operation,weconcludedthatozone/Feco-precipitationorcatalyzedphoto-oxidationwould be preferredfor watertreatment overion exchangeas this wouldeliminate the need topurchaseandtransportadditionalchemicals.On the otherhand,ion exchange isanattractive option forextractingAs fromcondensate.
Specialion-exchange resinshaveprovensuccessfulinremovingboron(B)fromgeothermalfluids(Recepoglu andBeker, 1991; Gallup,1995).Hot spring waterfromthegeothermalfield,containing 25ppm B,hadits Bcontentdecreasedto<1ppmin alaboratorycolumnartest.Theresinwas regenerated withsulfuricacid(H2SO4).Nodeteriorationinresinperformancewasobservedupto10 loading andregenerationcycles.
Fig.1. Flowchartofthebasic unit operations involvedintreatment cases1–6.
3.3.pHadjustment
Themajority of the casesconsidered inthisstudyrequireadjustmenttopH.Addingsodaash(Na2CO3)can increasethebufferingcapacityofthewaterandcondensate.Sodaash or limetreatmentcan also beused toenhanceprecipitationofcertainspecies.PurchasedH2SO4,on-site generatedsulfurousacid (H2SO3)or on-sitegenerated hydrochloric acid(HCl)canbe usedtoacidifywaterstomeetreuserequirementsor toinhibit silicascaling(Hirowatari,1996;Kitz andGallup,1997; Gallup,2002).Anumber ofgeothermalpowerplantsaroundtheworldutilizewater acidificationtoinhibitsilica scaling.Unocal CorporationcommencedthispracticeofpHadjustmentof hotandcoldgeothermalfluidsincommercialoperationsintheearly 1980s(Jostand Gallup,1985;Gallupetal.,1993; Gallup,1996).Inwater acidificationthepH is reduced slightly soastoslowdownthesilicapolymerizationreactionkinetics withoutsignificantly increasing corrosionrates.
3.4.Cooling ponds
In thiswaterprocessingoption,the wateriscooledinopen, lined pondsprior toinjectionor treatmentforbeneficialuse. Theflashedwater isallowedtoflowinto thepond whereit“ages”forupto3days;thisisasufficientlengthof timetoachieveamorphoussilicasaturationatambienttemperature,whichisassumedto bebelow20 ◦Cmostof theyear.Adjustment ofthe waterpHto8.0±0.5withsodaashorlimeenhanceswaterdesilication,resulting inundersaturationwith respect to amorphous silica(Gallupetal.,2003).At15◦C, the solubilityofamorphous silicain thewater inourtestfieldis predicted tobe about90ppm (Fournier andMarshall,1983).Inalargebottle,field waterwasadjustedfrom pH7.2to8.1withsoda ash andallowedtocoolto15 ◦Coveraperiodof90min.Theresultantdissolvedsilica[Si(OH)4]concentrationin thesupernatant fluidwas54 ppm(undersaturatedbyabout40%).
3.5.Filtra
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 环境工程 专业 英语 文献 双语版