数值模拟报告.docx
- 文档编号:7709698
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:21
- 大小:1.06MB
数值模拟报告.docx
《数值模拟报告.docx》由会员分享,可在线阅读,更多相关《数值模拟报告.docx(21页珍藏版)》请在冰豆网上搜索。
数值模拟报告
第一部分:
数值模拟技术研究文献综述
浅析数值模拟技术
1.引言
近年来,随着我国大规模地进行“西部大开发”和“南水北调”等巨型工程,越来越多的岩土工程难题摆在我们面前,单纯依靠经验、解析法显然已不能有效指导工程问题的解决,迫切需要更强有力的分析手段来进行这些问题的研究和分析。
自.Clough上世纪60年代末首次将有限元引入某土石坝的稳定性分析以来,数值模拟技术在岩土工程领域取得了巨大的进步,并成功解决了许多重大工程问题。
特别是个人电脑的普及及计算性能的不断提高,使得分析人员在室内进行岩土工程数值模拟成为可能。
在这样的背景下,数值模拟特别是三维数值模拟技术逐渐成为当前中国岩土工程研究和设计的主流方法之一,也使得岩土工程数值模拟技术成为当今高校和科研院所岩土工程专业学生学习的一个热点。
采用大型通用软件对岩土工程进行数值模拟计算,在目前已成为项目科研、工程设计、风险评估等岩土类项目的必须,学习和掌握AnsysFLACDUDEC等数值计算软件已成为学校、科研院所对工程从业人员的基本要求。
数值模拟方法主要有限元法、边界元法、加权余量法、半解析元法、刚体元法、非连续变形分析法、离散元法、无界元法和流形元法等,各种方法都有其对应的软件。
2.数值模拟的发展趋势
可以说,继理论分析和科学试验之后,数值模拟已成为科学技术发展的主要手段之一。
随着软件技术和计算机技术的发展,目前国际上数值模拟软件发展呈现出以下一些趋势:
(1).由二维扩展为三维。
早期计算机的能力十分有限,受计算费用和计算机储存能力的限制,数值模拟程序大多是一维或二维的,只能计算垂直碰撞或球形爆炸等特定问题。
随着第三代、第四代计算机的出现,才开始研制和发展更多的三维计算程序。
现在,计算程序一般都由二维扩展到了三维,如LS-DYNA2D和LS-DYNA3DAUTODYN2D和AUTO-DYN3D
(2).从单纯的结构力学计算发展到求解许多物理场问题。
数值模拟分析方法最早是从结构化矩阵分析发展而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值模拟方法。
近年来数值模拟方法已发展到流体力学、温度场、电传导、磁场、渗流等求解计算,最近又发展到求解几个交叉学科的问题。
例如内爆炸时,空气冲击波使墙、板、柱产生变形,而墙、板、柱的变形又反过来影响到空气冲击波的传播,这就需要用固体力学和流体动力学的数值模拟结果交叉迭代求解。
(3).由求解线性问题进展到分析非线性问题。
随着科学技术的发展,线性理论已经远远不能满足设计的要求。
诸如岩石、土壤、混凝土等,仅靠线性计算理论就不足以解决遇到的问题,只有采用非线性数值算法才能解决。
众所周知,非线性的数值模拟是很复杂的,它涉及到很多专门的数学问题和运算技巧,很难为一般工程技术人员所掌握。
为此,近年来国外一些公司花费了大量的人力和资金,开发了诸如LS-DYNA3DABAQUS和AU-TODYN等专长求解非线性问题的有限元分析软件,并广泛应用于工程实践。
这些软件的共同特点是具有高效的非线性求解器以及丰富和实用的非线性材料库。
3.数值模拟的基本原理
一般而言,岩、土体处于三向受力状态,其破坏模式往往表现为压-剪破坏
和拉伸破坏。
要分析和预测岩、土体在外力作用下的变形、破坏,就需要对其变形、破坏情况进行较为直观地再现。
岩土工程数值模拟正是从岩、土体的受力状态出发,来分析和预测岩、土体破坏情况的一种手段。
其基本原理是以典型试样的物理试验(室内试验或现场试验)获得的强度来表征整个地质体的岩、土体强度,以边界条件替代地质体周围所受的约束条件,借由本构关系表达岩、土体在外力作用下的应力-应变特性,最终了解、预测岩、土体变形破坏情况。
它具有鲜明的时代特征,以计算机为实现平台,是信息化时代的产物。
通过与其它方法(如人工智能、人工生命科学、随机模拟、模糊数学、灰色理论以及分形理论等)交叉共生、相互耦合嫁接,以获得更广阔的发展空间。
从广义上来说,岩、土体的室内试验和原位试验也是一种模拟手段,本文称之为物理模拟。
之所以如此称谓,是因为它们也是为较真实地近似再现岩、土体在其所赋存的环境中所处的受力状态所采用的一种手段。
从这个意义上来说,它与数值模拟的基本原理是相同的,因此,可以将数值模拟称为虚拟实验室模拟。
所不同的是,数值模拟除可以进行常规尺寸模型的模拟外,还可以进行宏观和细观两个层面尺寸模型的模拟,而其输入的参数则需通过物理模拟来提供。
因此,数值模拟是与物理模拟并行发展、相互补充和相互验证的试验系统。
相较于其它方法,数值模拟具有可重复和操作性强,费用低廉,不受模型尺寸控制,可视化程度高的优点,能有效延伸和扩展分析人员的认知范围,为分析人员洞悉岩、土体内部的破坏机理提供了强有力的可视化手段。
当然作为一种分析方法,它也有自身的缺点,主要是易受制于岩、土体结构的描述和模型概化的准确性及合理性;受制于岩、土体物理试验模拟结果的准确性;受制于岩、土体本构关系与实际岩、土体力学响应特性拟合程度的高低。
4.数值分析方法中存在的问题
到目前为止,研究计算工程的文章很多,但真正用于实际工程的数值分析方法(例如有限元法等)却较少。
部分原因在于有较多不成功应用的实例。
为什么会有这种情况,原因是多方面的,下面列出几条仅供参考:
(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;在什么情况下是属于计算方法问题或本构模型问题;在什么情况下是参数的确定问题或计算本身的问题等。
(2)各种本构模型固有的局限性。
具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。
例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响;模型只能考虑硬化,不能反映软化;模型不能反映各向异性。
剑桥模型也仅能考虑硬化而不能反映软化,不能反映土的剪切膨胀和各向异性,不能用于超固结土等。
(3)现有的试验手段和设备不能提供适当、合理和精确的参数。
靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;土的参数因土样扰动难以高质量的获取,其精度很差。
有些模型要求较多的参数,但这些参数用常规的试验手段和设备难以获取等。
岩土工程中如何应用精确的数学模型和本构模型是一个值得注意的问题。
在一般结构分析中,因材料的力学性质简单、均匀,不确定性较小,一般采用较精确的数学模型会得到较精确的分析结果。
但就土这种材料而言,因其不确定性非常大,其情况发生了很大的变化。
众所周知,场地土性及其参数勘察结果的精度和准确性是很差的,由此导致既使采用了很精确的数学模型,但因输入参数的精度不能与之相匹配,其计算结果同样会很差。
采用精确的数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。
这样可能使人们忽略了精确的数学公式也照样会有出错的可能性。
只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。
5.结语
20世纪60年代以后,由于电子计算机的飞速发展使岩土工程数值分析方法得到不断发展和完善,并用于岩土工程实践。
虽然在工程实际使用中数值分析方法存在一些问题,但只要认清问题的实质,并采取措施去解决它,相信随着岩土工程数值分析方法的不断发展及其工程经验的不断积累,在工程实践中将会得到越来越多的应用,它必将成为岩土工程分析中的有力工具。
参考文献
[1]张森,言志信,段建.边坡开挖数值模拟及其稳定性评价研究[J].西部探矿工程.(3).
[2]汪军,刘海波.边坡稳定性的有限元数值模拟建模[J].华北科技学院学报.(0).
[3]陈印东,刘叔灼.基于强度折减法的边坡稳定性分析[J].科学技术与工程.(0).
[4]王浩.类土质路堑高边坡典型失稳机制与加固工程对策的数值模拟研究[D].铁道部科学研究院,2004.
[5]张超,杨春和.有限差分强度折减法求解边坡稳定性[J].土木工程与管理学报.(4).
[6]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报.(0).
[7]邹宝祥,李明,唐伟华•某大桥边坡稳定性FLAC3D数值模拟分析[J].山西建筑.(3).
[8]郭辉.山西晋城土质垂直高边坡稳定性计算及数值模拟研究[D].西安科技大学,2011.
[9]郭志柳,陈建东,吴鹏.填土物理力学性质对路堤边坡稳定性影响的数值模
拟[J].江西理工大学学报.(9).
第二部分:
数值模拟技术FLAG。
上机报告
FLAC3D数值模拟上机题
计算模型分别如图1、2、3所示,边坡倾角分别为30°、45°、60°,岩土体参数为:
密度p=2500kg/m3,弹性模量E=1x108Pa,泊松比卩=,抗拉强度bt=x106Pa,内聚力C=x104Pa,摩擦角17°
试用FLAC3D软件建立单位厚度的计算模型,并进行网格剖分,参数赋值,设定合理的边界条件,利用FLAC3D软件分别计算不同坡角情况下边坡的稳定性,并进行结果分析。
附换算公式:
1kN/m3=100kg/m3
剪切弹性模量:
体积弹性模量:
3(12)
图1倾角为30°的边坡(单位:
m)
计算命令流如下:
new
genzonebrickp0000p110000p2010p30040size50110
genzonebrickp040040p1100040p240140p3060p4100140&
p5160p6100060p7100160size30110
fixxrangex
fixxrangex
fixy
fixzrangez
modelelas
propdensity2500bulk3e9shear1e9
setgravity00-10
solve
inixdisp0ydisp0zdisp0
inixvel0yvel0zvel0
modelmohr
c42000fric17ten800000
propdensity2500bulkshear
solvefosfileassociated
计算结果如下:
最终计算边坡的稳定性系数为:
Fs=
分析:
30°边坡稳定性系数采用的是FLACd内置的强度折减法求解,稳定性系数>1,从稳
定性系数系数可以判断该边坡处于安全状态。
坡面最大速度为s,随着深度的增加,竖向应
力逐渐增大。
坡肩处出现下沉,最大值达到。
100
图2倾角为45°的边坡(单位:
m)
计算命令流如下:
new
genzonebrip0000p110000p2020p30040size50110
genzonebrip040040p1100040p240240p360060p4100240p560260p6100060&p7100160size30110modelmohrpropdensitybulkshearctens&
friction17dilation20fixxyzrangezfixxrangexfixxrangexfixysetgravity=plotaddaxeredplotcondis;定义循环终止条件defcalfos
ait1=k11=k12=loopwhile(k12-k11)>ait1fs=(k12+k11)/
refric=(atan((tan(17*pi/180))/fs))*180/pirecoh=42000/fs
;折减实现过程
command
inisxxsyyszzsxysxzsyz
inixvelyvelzvelinixdisydiszdisprofricrefriccohrecohsetmechratio1e-5solvestep5000printfsend_commandaa=mech_ratioifaa<1e-5then
k11=fs
else
k12=fsend_ifend_loopendcalfosSAVE
solvefosfileassociated
计算结果如下:
b>k^whm
图2-a,网格剖分图
>«taRB
4I■»■-I
fi-tcheOi■m
:
&t.iMi
NH4
ID
ta'A■
.b-;
■_KH|»K!
r!
TMMJ
■jiRaq.K'1TL tlQBHP■4 &E»4PkrrmjjQ TBbfflnilOSM- IVIMiftT "»Enta<«-Eig^n p|KitotKiaiiHMtt ■I卫皿"a440.nr«ffii>#i ■IH>4& 图2-c,速度等值线图 最终计算边坡的稳定性系数为: 图2-d,位移等值线图 Fs= 分析: 45°边坡稳定性系数采用的是FLACd自编的强度折减法求解,稳定性系数>1,从稳 定性系数系数可以判断该边坡处于安全状态。 坡面最大速度为S,随着深度的增加,竖向应 力逐渐增大。 坡肩处出现下沉,最大值达到5,34m。 40 -azJ : [ X ° /\ /\ 48.45 100 图3倾角为60°的边坡(单位: m) 计算命令流如下: new genzonebrickp0000pl10000p2010p30040size50110 genzonebrickp040040p1100040p240140p3060p4100140p5160& p6100060p7100160size30110 attachfacerangez fixxrangex fixxrangex fixy fixzrangez modelelaspropdensity2500bulk3e9shear1e9setgravity00-10 solveinixdisp0ydisp0zdisp0 inixvel0yvel0zvel0modelmohr c42000fric17ten800000 propdensity2500bulkshear solvefosfileassociated 计算结果如下: Ifinim 图3-b,速度矢量图 Kia 图3-a,网格剖分图 #箏站r. Hohi I』iflHNMM1BQME tlKjOlria: ■bir^a. rwm'MO 图3-c,速度等值线图 i,k上 HI■vfflT I*i申e. MS'TfctfCE吃i■ Dia-m] I|IMM3lC-E9ab4|- I冲1 一i 2BMtn2SHMK 最终计算边坡的稳定性系数为: 图3-d,位移等值线图 Fs= 分析: 60°边坡稳定性系数采用的是FLAC3。 内置的强度折减法求解,稳定性系数<1,从稳定 性系数系数可以判断该边坡处于不安全状态。 坡面最大速度为s,随着深度的增加,竖向应 力逐渐增大。 坡肩处出现下沉,最大值达到,故应采取措施以保证边坡安全。 图4边坡开挖算例分析 计算命令流如下: new genzonebrickp0000pl10000p2010p30040size100110 genzonebrickp040040p1100040p240140p350050p4100140p550150p6100050p7100150size6015 genzonebrickp053050p1100050p253150p363060p4100150p563160p6100060p7100160size4715 attachfacerangez attachfacerangez fixxrangex fixxrangex fixy fixzrangez modelelas propdensity2500bulk3e9shear1e9 setgravity00-10 solve inixdisp0ydisp0zdisp0 inixvel0yvel0zvel0 modelmohr propdensity2500bulkshearc42000fric17ten800000 solvefosfileassociated 计算结果如下: 最终计算边坡的稳定性系数为: Fs= 分析: 60°开挖后边坡稳定性系数采用的是FLACd内置的强度折减法求解,稳定性系数>1, 从稳定性系数系数可以判断该边坡处于安全状态。 坡面最大速度为s,随着深度的增加,竖 向应力逐渐增大。 坡肩处出现下沉,最大值达到。 第三部分: 数值模拟技术研究应用实例分析 基于FLAC3D在不同土体参数条件下的边坡稳定性研究摘要: 边坡稳定性的影响因素很多,最直接的是边坡岩土体的性质、地下水、边坡坡脚等。 对于人工填土的路堤边坡而言,主要是填土的物理参数。 本文介绍了数值模拟法的工程应用的历史及现状,数值模拟在边坡中的应用。 然后利用FLAC3D软件,采用控制变量法,在保持其他土体物理参数不变的情况下,分别依次改变弹性模量、泊松比、密度、凝聚力、内摩擦角,计算边坡的稳定性,观察边坡稳定性系数变化,以及各点位移量的变化,从而得出土体物理参数变化对路堤边坡稳定性的影响,为路堤边坡填土土类提供依据和建议。 关键词: 边坡、物理参数、FLAC3D 1研究背景 21世纪以来,中国处于快速发展的阶段,国内基础建设蓬勃发展。 随着水利工程、公路等基础设施建设的大力开展,尤其是我国西部大开发战略的实施,大量公路建设深入西部山区,严重地破坏了局部区域内地质环境的平衡,大量的工程活动对地质环境的改变日益加剧,导致了大量地质灾害的发生,所以边坡的稳定性研究显得越来越重要。 边坡稳定性评价一直是边坡工程的一项主要内容,也是边坡工程设计和施工的基础。 边坡稳定性计算理论和判别方法可靠与否,关系到工程的安全问题,一旦边坡失稳,不仅会给国家带来巨大的经济损失,而且会危及人民生命财产安全。 2国内外研究状态目前边坡稳定性分析方法研究主要集中在与计算机技术、岩土力学、数学模型结合上,也产生和发展了一些新方法,其中三维稳定性分析是研究热点之一,以有限元法为代表的数值分析法以及各种不确定性分析方法发展迅速,而传统的极限平衡法主要以改进为主。 根据分析认为边坡稳定性分析研究在以后需要解决以下主要问题: 继续完善和发展现有理论和方法,扬长避短;建立具有普遍意义的边坡失稳机理和稳定性评价方法;统一评价标准,增加各方法之间的对比性;建立多因素的综合评价方法;建立反映边坡各个时段稳定状态的全过程评价方法;建立符合边坡稳定分析的理论体系或组合理论体系;重视人类活动动态,加强人类活动与边坡稳定的相互作用研究。 3FLAC3D模拟计算 基本模型 以下面的简单的模型为基础,计算不同物理参数下的稳定性系数,来进行本次研究,模型及形体参数见图1。 基本物理参数见表1。 图1基本模型及形体参数 表1基本模型的物理参数 土体物理参数参数 弹性模量E /MPa 泊松比卩 密度p/ (g•cm-3) 凝聚 力C /kPa 内摩擦®/ (°) 角 抗拉强度dt /MPa 剪切弹性模量 /MPa GE 体积弹性模量 /MP aKE 2 (1) 3(12) 10 42 17 在FLACD中建立模型,并计算边坡稳定性 ;创建几何模型: new genzonebrickp0000pl8000p2020p30020size40110genzonebrick& p040020p180020p240220p360040& p480220p560240p680040p780240&size20110 ;赋予材料模型属性 modelelas setgravity0,0,-10 propertybulk=8e9shear=5e9density=2500 ;施加边界约束 fixxrangex fixxrangex fixy fixzrangez ;试算 solve ;设置重力场 inixdis=0ydis=Ozdis=0 inixvel=0yvel=0zvel=0 ;赋予材料模型属性 modelmohr propertybulk=shear=friction=17 propertycohesion=tension= ;fos计算 solvefosfileassociated Cwte^Rotsdonr 片4,000**001X: 0000 Y1.000^000¥: 0.000 Z: 2(XXte+DOIz: QDtn Di3t-zias+otem即tfling22500 ConcurofSh^a-SrninRate宜-OOOOe+DOC Grtd-amCalcutatlon _^1Q: 8e-QQB(g0.0000e+00003000^000toSOQQCMXJeSOODMCeio1.0(XK'e-M)5 1 OODOEHOCflc1£0006-0051.5D0j&-0C5Ifl2.01XKU5 20003&in2.5003^035ISOOO^KS^ZB&iMOS 'rt? ^al=5Os-OC6 FoS FoBvalwii109 ItascaCiXlSuMnQGr
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 模拟 报告