海洋数据集的质量检查验收抽样方法翻译.docx
- 文档编号:7654159
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:19
- 大小:535.89KB
海洋数据集的质量检查验收抽样方法翻译.docx
《海洋数据集的质量检查验收抽样方法翻译.docx》由会员分享,可在线阅读,更多相关《海洋数据集的质量检查验收抽样方法翻译.docx(19页珍藏版)》请在冰豆网上搜索。
海洋数据集的质量检查验收抽样方法翻译
Acceptancesamplingplanofqualityinspectionforoceandataset
Comparedwiththedatasetofindustrialproducts,oceandatasetshaveseveraldistinctcharacteristics,suchaslargequantitiesandbeingmulti-source,multi-dimensionandmulti-type.Basedontheacceptancequalitylevel(AQL)andlimitqualitylevel(LQL),wedesignedanacceptancesamplingplanofqualityinspectionforoceandatasets(ASP-OD),usedthisplantoinspectoceandatasetquality,andevaluateditsadvantage.ASP-ODhasaconsistentandstablediscriminatorypowerindependentoflotsize’whichsolvestheproblemof‘strictnessforlargelotsize,tolerationforsmalllotsize’inthepercentsamplingplan.ASP-ODestablishesarelationshipbetweenlotsizeandsamplingsize,andprovidesaplanforagivenlotsize.ThisplanovercomesthedeficiencyofISO2859-basedsamplingplans,differentlotsizecorrespondingtothesamesamplingplan,inthequalityinspectionofoceandatasets.Collectively,thisstudysuggeststhatASP-ODisasuitablesamplingplanfortheinspectionofoceandatasetquality.
Keywords:
oceandataset;qualityinspection;AQL;LQL;acceptancesamplingplan
1.Introduction
Withtherapiddevelopmentofoceanmonitoringtechnology,hugeamountsofoceandatahavebeencollectedfromvarioussources,suchasremotesensingimages,buoys,cruisedataandunderwaterobservationdata.Thus,oceandatasetshavegraduallybecomeaclassicexampleofmulti-modalbigdata.However,thebiggestobstacleforpreparinganoceanatlasishowtocontrolthequalityofdata.Thequalitycontrolofoceandatasetsisanimportantpartofanyoceananalysis/forecastingsystem.Usingoracceptingerroneousdatacouldleadtoaninvalidconclusionoranincorrectanalysis.Bycontrast,rejectingextremebutvaliddatasometimescouldcausethemissingofkeyeventsandanomalousfeatures.Todate,agrowingnumberofscientistshavebeguntofocusonthequalityinspectionofoceandata.Anautomatedqualitycontrolsystemwasproposedtoinspectoceanictemperatureandtemperature-salinityprofiles.TheSurfaceOceanCO2Atlas(SOCAT)projectwasperformedtoinvestigatetheglobaldatasetofmarinesurfaceCO2.Duringthisproject,alldataweredesignedtobeputinauniformformatfollowingastrictprotocol.Qualitycontrolwasconductedaccordingtoclearlydefinedcriteria.Inaddition,thequalityandconsistencyofNASAoceancolourdata,includingspectralwater-leavingreflectance,chlorophyll-αconcentration,anddiffuseattenuation,wereexaminedusingcommonalgorithmsandimprovedinstrumentcalibrationknowledge.Thesestudieshaveputforwardseveralqualityinspectionplansforoceandata,especiallyforoneorafewelements.Oceandatasetsareusuallycomposedofmulti-element,multi-scaleandmulti-temporalgeo-informationelements.Moreover,thereisapotentialinterplaybetweendifferentelementsinanoceandataset.Thus,itisrequiredtoproposeanovelacceptancesamplingplantoinspectthequalityofoceandataasacompleteandindivisibledataset.
Thegoalofqualityinspectionistojudgewhetherthedatareachtherequiredqualitythroughasamplingplan.Currently,theoptimisationofacceptancesamplingplanshasbeenconductedtosatisfythebalancebetweeninspectionriskandinspectioncostforthequalityinspectionofindustrialproducts.Someacceptancesamplingplanshavebeendesignedbasedoninspectionrisk,whichaimedtominimiseeithertheproducer’sriskortheconsumer’srisk.Someotheracceptancesamplingplansweredesignedbasedontheinspectioncost,whichaimedtoreducethesamplingnumber.Theseexistingplansaremainlyusedtoinspectthequalityofindustrialproducts.Generally,industrialproductsareproducedinacontrolledandconsistentmanner,andusuallyhavecertainitemsanduniformunits.Comparedwithindustrialproducts,oceandatahavesomedistinctcharacteristics,suchasbeingmulti-source,multi-dimensionalmulti-type,multi-time-state,withdifferentaccuracyandnonlinearity.Thus,theseexistingacceptancesamplingplansarenotsuitableforthequalityinspectionofoceandatasets.
Inthispaper,wedesignedanacceptancesamplingplanofqualityinspectionforanoceandataset(ASP-OD).Insection2,theconceptualframework,derivationprocessandtheformulasofASP-ODareshown.Insection3,weapplytheASP-ODtoinspectthequalityofoceandata,andcompareitsadvantagesoverexistingacceptancesamplingplans.Insection4,wesummarisethisstudy,andproposethatASP-ODisasuitableacceptancesamplingplanforthequalityinspectionofoceandatasets.
2.DesignofASP-OD
ThetheoryofASP-OD
TheacceptancesamplingplanofqualityinspectionforoceandatasetswasdesignedasS(N,n,c).Here,Nisthelotsizeandcomprisesallinspectedoceandatafromwhichthesampleistobetaken;nisthesamplesizeandconsistsofanumberofsamplingunitsselectedfromthelotsize,whichisacompromisebetweentheaccuracyofproductinspectionandthecostoftheinspection;c,theacceptancenumber,isusedtojudgewhethertheinspectedoceandatameettherequirementoftheoceandataconsumer.Theprocessofqualityinspectionisshownasbelow:
(1)n-sampleddataareextractedfromthelotsizeN;
(2)thequalityofextracteddataisinspectedonebyone;(3)ifthenumberofnon-conformingdata(d)islargerthantheacceptancenumber(c),thequalityofinspectedoceandataisconsideredtobenon-conforming.Otherwise,thequalityofinspecteddataisconsideredtobeconforming.
BasedontheacceptancesamplingplanS(N,n,c),thepercentnon-conforming(P)iscalculatedby
(1)
whereDisthenumberofnon-conformingoceandatainthetotaloceandataset.
Generally,itisdifficulttoobtainthevaluesofDandPunlessthetotaldataare100percentinspected.Sampledoceandataareusedtoestimatetheparametersforlotsize.Thus,Pisusuallyestimatedusingthepercentnon-conformingestimator(p);piscalculatedby
(2)
wheredisthenumberofnon-conformingoceandatainthesampleddataset.
Basedontheabove-mentionedparameters,theacceptancequalityprobability(L(p))oftheacceptancesamplingplanS(N,n,c)canbecalculatedby
(3)
(0≦d≦n,d≦D,n-d≦N-Np)
Operatingcharacteristiccurves(OC-curve)arepowerfultoolsinthefieldofqualitycontrol,astheydisplaythediscriminatorypowerofanacceptancesamplingplan.Here,weconsideredthequalitylevelasthehorizontalaxisandthecorrespondingacceptanceprobabilityastheverticalaxis.TherelationshipbetweenL(p)andtheproportionpofnon-conformingitemswasrepresentedastheOC-curveofsamplinginspectioninarectangularcoordinatesystem.
Generally,consideringtheinterestsofboththeproducersandconsumers,acceptancequalitylevel(AQL)andlimitingqualitylevel(LQL)wereadoptedtodesigntheacceptancesamplingplan.LQLisamaximumqualitylevelofdefectivestoleratedintheinspectiondata.WhenthequalitylevelisworsethanLQL,theconsumerstendtorejecttheinspecteddata.AQLrepresentsameanqualitylevelofdefectivesamplestoleratedintheinspection.IfthequalityleveloftheinspecteddataisbetterthanAQL,theproducerstendtoaccepttheinspecteddata.
Tomeettherequirementofbothproducersandconsumers,AQLandLQLweretakenintoaccountintheASP-ODdesign,whichwasshownastwopointsintheOC-curve(Figure1).Thefirstpointisdenotedas
Figure1.OC-curveoftheacceptancesamplingplan
(p0,1-α)p0,i.e.AQL,istheproportionofnon-conformingitemsthatcanbetoleratedtojudgethattheentirelotcanbeaccepted.α,theproducer’srisk,istheprobabilityofrejectionoftheinspectedloteventhoughthequalitylevelofthelotisequaltoorbetterthanAQL.Thesecondpointisdenotedas(p1,β).p1,i.e.LQL,istheproportionofnonconformingitemsthatcanbetoleratedtojudgethattheentirelotcanberejected.β,theconsumer’srisk,istheprobabilityofacceptanceoftheinspectedloteventhoughthequalitylevelofthelotisequaltoorworsethanLQL.
UndertheconditionofthetwopointsontheOC-curve,therelationshipbetweenthelotsize,thesamplesizeandtheacceptancenumberiscalculated.Theproblemcouldbeformulatedasanonlinearprogrammingproblem.
TheASP-ODmodel
Fromtheperspectiveoftheproducer,theacceptancesamplingplanshouldsatisfythefollowingcondition:
(4)
D1,apositiveinteger,isthenumberofnon-conformingdataelementsintheinspectedoceandataset.Whentheproportionofnon-conformingdataisequaltoAQL,thevalueofD1iscalculatedby
D1=round(N·p1)(5)
Fromtheperspectiveoftheconsumer,theacceptancesamplingplanshouldsatisfythefollowingcondition
(6)
D2,apositiveinteger,isthenumberofnonconformingdataelementsintheinspectedoceandataset.Whentheproportionofnonconformingdataisworsethanthelimitingqualitylevel(LQL),thevalueofD2iscalculatedby
D2=round(N·p2)(7)
Thetotalresidualerror,ε,meansthesumofresidualerrorsoftheacceptanceprobabilityatbothAQLandLQL.Theroleofεisusedforthecalculationofthevalueofnandcintheacceptancesamplingplan.Here,wechosetheminimalεtodeterminetheoptimalnandcfortheacceptancesamplingplanatAQLandLQL.Theoptimalacceptancesamplingplanisformulatedasthefollowingnonlinearoptimisationproblem
s.t.
(8)
(9)
ε1istheresidualerroroftheacceptanceprobabilitybasedontheproducer’srisk.ε2istheresidualerroroftheacceptanceprobabilitybasedontheconsumer’srisk.Thenonlinearoptimisationproblemissolvedbasedontheiterativealgorithm.TheiterativealgorithmisimplementedinMatlabsoftware.
3.Casestudy
Inthissection,weemployedASP-OD,thepercentsamplingplan(PSP)andtheISO2859-basedsamplingplan(I
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 海洋 数据 质量 检查 验收 抽样 方法 翻译