时分复用的基本原理仿真实现 定稿资料.docx
- 文档编号:7625696
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:18
- 大小:445.86KB
时分复用的基本原理仿真实现 定稿资料.docx
《时分复用的基本原理仿真实现 定稿资料.docx》由会员分享,可在线阅读,更多相关《时分复用的基本原理仿真实现 定稿资料.docx(18页珍藏版)》请在冰豆网上搜索。
时分复用的基本原理仿真实现定稿资料
本科毕业论文(设计)
题目:
时分复用的基本原理仿真实现
院系:
继续教育学院
专业:
电子信息工程
年级:
2014级
学生姓名:
罗辉才
学号:
018414201621
指导教师:
张晓霞
二○一七年四月
汉口学院
学位论文原创性声明
本人郑重声明:
所呈交的学位论文是本人在导师指导下独立进行研究工作所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
本人完全意识到本声明的法律后果由本人承担。
学位论文作者签名:
日期:
年月日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
本学位论文属于
1、保密□,在_____年解密后适用本授权书。
2、不保密□。
(请在以上相应方框内打“√”)
学位论文作者签名:
日期:
年月日
导师职称:
导师签名:
日期:
年月日
目录
内容摘要....................................................................................................1
关键词........................................................................................................1
Keywords...................................................................................................1
Abstract.......................................................................................................1
引言.............................................................................................................2
第1章概述...............................................................................................3
1.1MATLAB概述................................................................................3
1.2Simulink简介..............................................................................3
1.3时分多路复用技术概述...............................................................5
第二章基本原理........................................................................................6
2.1频分多路复用原理........................................................................6
2.2时分多路复用原理........................................................................7
2.3时分多路复用分类........................................................................8
2.4抽样定理........................................................................................9
2.5TDM系统组成及工作原理............................................................10
第三章时分复用系统仿真模型...............................................................11
3.1Simulink仿真框图搭建..............................................................11
3.2仿真参数设置................................................................................12
第四章时分多路复用的Simulink仿真及结果分析..............................17
4.1时分多路的Simulink仿真..........................................................17
4.2仿真结果分析................................................................................18
总结............................................................................................................19
参考文献....................................................................................................20
致谢............................................................................................................21
内容摘要:
时分多路复用是一种数字复用技术,在数字通信系统中,信号的多路传输一般都采用时分多路复用方式来提高系统的传输效率。
本次论文设计介绍了MATLAB软件,以及Simulimk工具的特点及其应用,详细的介绍了时分多路系统的原理和所涉及的关键技术,最后运用Simulink工具模块搭建时分复用系统,对这一系统进行仿真。
关键词:
时分复用;系统仿真;simulink
Abstract:
timedivisionmultiplexingisadigitalmultiplexingtechnologyindigitalcommunicationsystem,multi-channelsignaltransmissiongenerallyusestime-divisionmultiplexingtoimprovethetransmissionefficiencyofthesystem.ThispaperintroducesthedesignofMATLABsoftware,andthecharacteristicsofSimulimktoolanditsapplication,introducedtheprincipleoftimedivisionmultiplexingsystemandthekeytechnologiesinvolved,andfinallybuildatimedivisionmultiplexingsystemusingSimulinktoolmodule,simulationofthesystem.
Keywords:
timedivisionmultiplexing;Simulink;systemsimulation
引言
时分多路复用系统是一种数字多路复用技术,也是一项十分复杂的技术。
随着现代通信系统的飞速发展,时分多路复用系统的仿真将成为当今通信系统中主要的传输技术,在通信系统的研发和教学中具有越来越重要的意义。
时分多路复用系统的仿真实现是衡量通信系统性能的重要工具。
与一般仿真过程相似,在对时分多路复用系统仿真之前,首先需要研究时分多路复用系统的特性,通过归纳和抽样建立时分多路复用系统的仿真模型。
时分多路复用系统仿真是通过分析建立起一个能够在一定程度上描述时分多路复用系统的仿真模型,然后通过仿真实验得到相关数据,对仿真数据的结果分析可以得到相应结论,然后把这个结论应用到对当前时分多路复用系统中,达到对输入信号实现复用的效果
第一章概述
1.1MATLAB概述
MATLAB是一种解释性执行语言,具有强大的计算、仿真、绘图等功能。
MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而且利用MATLAB产品的开放式结构,可以非常容易地对MATLAB的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB产品以提高产品自身的竞争能力。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
利用M语言还开发了相应的MATLAB专业工具箱函数供用户直接使用。
这些工具箱应用的算法是开放的可扩展的,用户不仅可以查看其中的算法,还可以针对一些算法进行修改,甚至允许开发自己的算法扩充工具箱的功能。
目前MATLAB产品的工具箱有四十多个,分别涵盖了数据获取,科学计算,控制系统设计与分析、数字信号处理、数字图像处理、金融财务分析以及生物遗传工程等专业领域。
1.2Simulink简介
Simulink(动态系统仿真)是MATLAB中一个建立系统方框图和基于方框图级的系统仿真环境,是一个对动态系统进行建模、仿真并对仿真结果进行分析的软件包。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink的一般结构:
输入→系统→输出
Simulink应用及特点
Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。
.
构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。
Simulink与MATLAB紧密集成在一起的,可以在两种环境下对自己的模型进行仿真、分析和修改,也可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。
Simulink特点如下:
(1)丰富的可扩充的预定义模块库。
(2)交互式的图形编辑器来组合和管理直观的模块图。
(3)以设计功能的层次性来分割模型,实现对复杂设计的管理。
(4)通过ModelExplorer导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码。
(5)提供API用于与其他仿真程序的连接或与手写代码集成。
(6)使用EmbeddedMATLAB™模块在Simulink和嵌入式系统执行中调用MATLAB算法。
(7)使用定步长或变步长运行仿真,根据仿真模式(Normal,Accelerator,RapidAccelerator)来决定以解释性的方式运行或以编译C代码的形式来运行模型。
(8)图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为。
(9)可访问MATLAB从而对结果进行分析与可视化,定制建模环境,定义信号参数和测试数据。
(10)模型分析和诊断工具来保证模型的一致性,确定模型中的错误。
1.3时分多路复用技术概述
在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。
所谓多路通信,就是指把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并将它们相应接收。
时分复用就是一种常用的多路通信方式。
时分复用是建立在抽样定理基础上的,因为抽样定理使连续的基带信号有可能被在时间上离散出现的抽样脉冲所代替。
这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。
利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。
两个基带信号在时间上交替出现,显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。
这就是时分复用的概念。
此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。
然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。
所谓同步是指接收端能正确地从数据流中识别各路序号。
为此,必须在每帧内加上标志信号(即帧同步信号)。
它可以是一组特定的码组,也可以是特定宽度的脉冲。
在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等信令。
上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。
采用时分复用的数字通信系统,在国际上已逐步建立其标准。
原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,汇合成更高速的数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。
第二章基本原理
2.1频分多路复用原理
在物理信道的可用带宽超过单个原始信号(如原理图2.1.1中的CH1、CH2和CH3这3路信号)所需带宽情况下,可将该物理信道的总带宽分割成若干个与传输单个信号带宽相同(或略宽)的子信道;然后在每个子信道上传输一路信号,以实现在同一信道中同时传输多路信号。
多路原始信号在频分复用前,先要通过频谱搬移技术将各路信号的频谱搬移到物理信道频谱的不同段上,使各信号的带宽不相互重叠(搬移后的信号如图中的中间3路信号波形);然后用不同的频率调制每一个信号,每个信号都在以它的载波频率为中心,一定带宽的通道上进行传输。
为了防止互相干扰,需要使用抗干扰保护措施带来隔离每一个通道。
图2.1.1频分复用原理图
(FDM)频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。
因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。
在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。
在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。
根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。
①前群,又称3路群。
它由3个话路经变频后组成。
各话路变频的载频分别为12,16,20千赫。
取上边带,得到频谱为12~24千赫的前群信号。
②基群,又称12路群。
它由4个前群经变频后组成。
各前群变频的载频分别为84,96,108,120千赫。
取下边带,得到频谱为60~108千赫的基群信号。
基群也可由12个话路经一次变频后组成。
③超群,又称60路群。
它由5个基群经变频后组成。
各基群变频的载频分别为420,468,516,564,612千赫。
取下边带,得到频谱为312~552千赫的超群信号。
④主群,又称300路群。
它由5个超群经变频后组成。
各超群变频的载频分别为1364,1612,1860,2108,2356千赫。
取下边带,得到频谱为812~2044千赫的主群信号。
3个主群可组成900路的超主群。
4个超主群可组成3600路的巨群。
频分复用的优点是信道复用率高,允许复用路数多,分路也很方便。
因此,频分复用已成为现代模拟通信中最主要的一种复用方式,在模拟式遥测、有线通信、微波接力通信和卫星通信中得到广泛应用。
2.2时分多路复用原理
时分复用TDM是采用同一物理连接的不同时段来传输不同的信号,也能达到多路传输的目的。
时分多路复用以时间作为信号分割的参量,故必须使各路信号在时间轴上互不重叠。
时分多路复用(TDM)是按传输信号的时间进行分割的,它使不同的信号在不同的时间内传送,将整个传输时间分为许多时间间隔(Slottime,TS,又称为时隙),每个时间片被一路信号占用。
TDM就是通过在时间上交叉发送每一路信号的一部分来实现一条电路传送多路信号的。
电路上的每一短暂时刻只有一路信号存在。
因数字信号是有限个离散值,所以TDM技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM。
时分多路复用适用于数字信号的传输。
由于信道的位传输率超过每一路信号的数据传输率,因此可将信道按时间分成若干片段轮换地给多个信号使用。
每一时间片由复用的一个信号单独占用,在规定的时间内,多个数字信号都可按要求传输到达,从而也实现了一条物理信道上传输多个数字信号。
假设每个输入的数据比特率是9.6kbit/s,线路的最大比特率为76.8kbit/s,则可传输8路信号。
以电话通信为例说明时分多路复用的过程:
发送端的各路话音信号经低通滤波器将带宽限制在3400Hz以内,然后加到匀速旋转的电子开关 SA1上,依次接通各路信号,它相当于对各路信号按一定的时间间隙进行抽样。
SA1旋转一周的时间为一个抽样周期T,这样就做到了对每一路信号每隔周期T 时间抽样一次,此时间周期称为1帧长。
发送端电子开关 SA1不仅起到抽样作用,同时还要起到复用和合路的作用。
合路后的抽样信号送到编码器进行量化和编码,然后,将信号码流送往信道。
在接收端,将各分路信号码进行统一译码,还原后的信号由分路开关SA2依次接通各分路,在各分路中经低通滤波器将重建的话音信号送往收端用户。
在上述过程中,应该注意的是,发、收双方的电子开关的起始位置和旋转速率都必须一致,否则将会造成错收,这就是PCM系统中的同步要求。
收、发两端的数码率或时钟频率相同叫位同步或称比特同步,也可通俗的理解为两电子开关旋转速率相同;收、发两端的起始位置是每隔1帧长(即每旋转一周)核对一次的,此称帧同步。
这样才一能保证正确区分收到的哪8位码是属于一个样值的,又是属于哪一路的。
为了完成上述同步功能,在接收端还需设有两种装置:
一是同步码识别装置,识别接收的PCM 信号序列中的同步标志码的位置;二是调整装置,当收、发两端同步标志码位置不对应时,需在收端进行调整使其两者位置相对应。
以上两种装置统称为帧同步电路。
TDM系统具有抗干扰性强、无噪声积累、功放器件全激励功率的利用充分等优点。
虽然由于频谱利用率远低于频分多路复用(FDM)系统,工作频带较窄的电缆不能用于大容量系统,但光缆和K波段微波的高载频可提供很大带宽,而多值正交调幅技术在数字微波系统上的应用还可大大提高波道的频谱利用率,使它们均可用于大容量数字传输系统。
在电信网必然要过渡到综合业务数字网的趋势下,时分复用系统将居独占地位。
2.3时分多路复用分类
TDM又分为同步时分复用(SynchronousTimeDivisionMultiplexing,STDM)和统计时分复用(AsynchronousTimeDivisionMultiplexing,ATDM)。
同步时分复用
同步时分复用采用固定时间片分配方式,即将传输信号的时间按特定长度连续地划分成特定的时间段(一个周期),再将每一时间段划分成等长度的多个时隙,每个时隙以固定的方式分配给各路数字信号,各路数字信号在每一时间段都顺序分配到一个时隙。
由于在同步时分复用方式中,时隙预先分配且固定不变,无论时隙拥有者是否传输数据都占有一定时隙,这就形成了时隙浪费,其时隙的利用率很低,为了克服STDM的缺点,引入了异步时分复用技术。
统计时分复用
统计时分复用又被称为异步时分复用(ATDM)能动态地按需分配时隙,以避免每个时间段中出现空闲时隙。
ATDM就是只有当某一路用户有数据要发送时才把时隙分配给它;当用户暂停发送数据时,则不给它分配时隙。
电路的空闲时隙可用于其他用户的数据传输。
另外,在ATDM中,每个用户可以通过多占用时隙来获得更高的传输速率,而且传输速率可以高于平均速率,最高速率可达到电路总的传输能力,即用户占有所有的时隙。
2.4抽样定理
所谓抽样,就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。
在一个频带限制在(0,fh)内的时间连续信号f(t),如果以小于等于1/(2fh)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号.或者说,如果一个连续信号f(t)的频谱中最高频率不超过fh,这种信号必定是个周期性的信号,当抽样频率fS≥2fh时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。
根据这一特性,可以完成信号的模数转换和数模转换过程。
在发端采用了周期均为2s的方波函数作为第一路信号,正弦函数作为第二路信号,和锯齿波函数第三路输入信号。
周期为01s的方波离散化后对第一路信号抽样,分别延迟一个单元、两个单元在对第二路、第三路信号进行抽样,抽样后的信号经过一个合路器传送到信道。
时分复用原理完全是建立在抽样定理基础上。
在相邻抽样脉冲之间存在时间上的空隙,利用这种空隙便可以在同一信道中传输其它路信号的抽样脉冲,只要抽样脉冲之间相互不混淆.在时间上分开的,在接收端就可以想法把各种信号
分开,最后实现恢复各路原始
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时分复用的基本原理仿真实现 定稿资料 时分 基本原理 仿真 实现 定稿 资料