显卡性能参数解析.docx
- 文档编号:7595619
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:10
- 大小:27.73KB
显卡性能参数解析.docx
《显卡性能参数解析.docx》由会员分享,可在线阅读,更多相关《显卡性能参数解析.docx(10页珍藏版)》请在冰豆网上搜索。
显卡性能参数解析
电脑主板型号的区别,845.865.915.945什么意识和各个插槽的发展史
问题1
你说的815845865915945965是INTEL公司的主板芯片组型号;
815很古董级的平台;
845为早期平台低端版本,865为高端,支持usb2.0内存双通道等;
915为早期平台向近期过度产品,表现在可以使用早期的DDR1内存,却能使用流行的PCI-E显卡接口,使用775接口CPU但不支持奔腾4
芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片。
北桥芯片提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持。
南桥芯片则提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、UltraDMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持。
其中北桥芯片起着主导性的作用,也称为主桥(HostBridge)。
移动芯片组市场份额最大的依然是Intel,当然参与芯片组竞争的厂商也非常多。
台湾芯片组三巨头矽统SIS、威盛VIA、扬智ALI、以及图形显示芯片霸主ATI、NVIDIA。
问题2
3个装机必须了解的插槽
1CPU插槽
拿INTEL的说吧
815系列370
845系列478
865系列478有的是775
915系列775
945系列775
965系列775
2内存插槽
815系列SD
845系列DDR
865系列DDR
915系列DDR
945系列DDR2
965系列DDR2
显卡插槽
815系列AGP
845系列AGP
865系列AGP
915系列PCI-E
945系列PCI-E
965系列PCI-E
问题3
CPU主板内存必须要支持比如945主板只能用775接口的CPUPCI-E接口的显卡
显卡工作原理
首先我们应该了解一下显卡的简单工作原理:
首先,由CPU送来的数据会通过AGP或PCI-E总线,进入显卡的图形芯片(即我们常说的GPU或VPU)里进行处理。
当芯片处理完后,相关数据会被运送到显存里暂时储存。
然后数字图像数据会被送入RA骂死我吧AC(RandomAccessMemoryDigitalAnalogConverter),即随机存储数字模拟转换器,转换成计算机显示需要的模拟数据。
最后RA骂死我吧AC再将转换完的类比数据送到显示器成为我们所看到的图像。
在该过程中,图形芯片对数据处理的快慢以及显存的数据传输带宽都会对显卡性能有明显影响。
技术参数和架构解析
一、核心架构:
我们经常会在显卡文章中看到“8×1架构”、“4×2架构”这样的字样,它们代表了什么意思呢?
“8×1架构”代表显卡的图形核心具有8条像素渲染管线,每条管线具有1个纹理贴图单元;而“4×2架构”则是指显卡图形核心具有4条像素渲染管线,每条管线具有2个纹理贴图单元。
也就是说在一个时钟周期内,8×1架构可以完成8个像素渲染和8个纹理贴图;而4×2架构可以完成4个像素渲染和8个纹理贴图。
从实际游戏效果来看,这两者在相同工作频率下性能非常相近,所以常被放在一起讨论。
举例来说,nVIDIA在发布GeForceFX5800Ultra的时候,对于其体系架构就没有给出详尽说明。
后来人们发现官方文档中提到的每个周期处理8个像素的说法,只是指的Z/stencil像素,其核心架构可以看作是GeForce4Ti系列4×2架构的改进版本,其后发布的GeForceFX5900系列也是如此。
ATi的Radeon9700和9800系列则具有完整的8条像素渲染管线。
但是这些显卡的性能基本上都处于一个档次。
目前主流的中低端显卡,基本上都是4×1架构或2×2架构,也就是单位周期只能完成4个纹理贴图。
而更高端的产品则拥有12×1架构甚至16×1架构。
二、核心工作频率:
俗话说得好:
“勤能补拙”。
虽然高规格的架构拥有先天性的优势,但是中低规格的核心架构通过提高工作频率,也可以达到接近中高端产品的性能。
举例来说,Radeon9500PRO采用的是8×1架构,而Radeon9600XT则只是4×1架构。
不过采用0.15微米制造工艺的Radeon9500PRO核心/显存工作频率是275MHz/540MHz,而采用0.13微米工艺的Radeon9600XT则达到了500MHz/600MHz,核心频率几乎是前者的两倍。
因此在单位时间内,它们可完成的像素渲染和纹理贴图工作量大致相当,因此性能处于同一水平。
所以采用更先进制造工艺,拥有良好超频性能的显卡产品往往很受玩家欢迎。
三、显存带宽:
在大型3D游戏等应用中,显卡的图形芯片与显存之间经常需要进行大量的数据交换。
这时如果显存的数据传输带宽太低,就会严重制约数据的顺利传输,导致图形芯片时常处于“等米下锅”的状态,这也是对芯片性能的浪费。
所以DIY玩家在超频显卡时,往往是将核心/显存频率一起提升,这样就不容易让显存带宽成为制约显卡性能的瓶颈。
64bit显存位宽的显卡之所以被玩家们所“鄙视”,也正是因为其显存的数据传输带宽大幅缩水。
除了前面提到的内容外,图形芯片的处理效率以及驱动程序的优劣也都是影响显卡性能的重要因素。
解读显卡性能
通过上面的介绍,我们应该不难从显卡的技术参数中了解其实际性能。
例如在真实游戏测试中,4×2构架的GeForce4Ti4200速度居然屡屡胜出采用4×1构架的GeForceFX5600、5700以及Radeon9600、9600PRO等中高端显卡。
只有GeForceFX5700Ultra和Radeon9600XT才略为挽回一点面子,不过它们的核心工作频率比起GeForce4Ti4200几乎翻了一番,售价也几乎高出后者一倍。
要不是无法支持DirectX9特效限制了GeForce4Ti4200的施展空间,当今市场上的诸多中端显卡都将面临非常难堪的境地,也难怪4200能成为一代经典。
而如果选择4×1/2×2构架的显卡产品,我们也可以通过超频使其达到更好的性能。
附表:
主流DirectX9显卡像素渲染管线规格一览
像素渲染管线nVIDIAATi
AGP8X显卡PCI-E显卡AGP8X显卡PCI-E显卡
16GeForce6800Ultra
GeForce6800GTGeForce6800Ultra
GeForce6800GTRadeonX800XTPERadeonX800XTPE
12GeForce6800GeForce6800RadeonX800PRORadeonX800PRO
8×1/4×2GeForce6800LE
GeForceFX5900系列
GeForceFX5800系列GeForce6600系列
GeForcePCX5900Radeon9800系列
Radeon9700系列
Radeon9800SE游戏版
Radeon9500PRORadeonX700系列
4×1/2×2GeForceFX5700系列
GeForceFX5600系列
GeForceFX5500
GeForceFX5200系列GeForce6200
GeForcePCX5750
GeForcePCX5300Radeon9800SE
Radeon9500
Radeon9600系列
Radeon9550RadeonX600系列
RadeonX300系列
显示芯片
显示芯片,又称图型处理器-GPU,它在显卡中的作用,就如同CPU在电脑中的作用一样。
更直接的比喻就是大脑在人身体里的作用。
先简要介绍一下常见的生产显示芯片的厂商:
Intel、ATI、nVidia、VIA(S3)、SIS、Matrox、3DLabs。
Intel、VIA(S3)、SIS主要生产集成芯片;
ATI、nVidia以独立芯片为主,是目前市场上的主流,但由于ATi现在已经被AMD收购,以后是否会继续出独立显示芯片很难说了;
Matrox、3DLabs则主要面向专业图形市场。
由于ATI和nVidia基本占据了主流显卡市场,下面主要将主要针对这两家公司的产品做介绍。
型号
ATi公司的主要品牌Radeon(镭)系列,其型号由早其的RadeonXpress200到Radeon(X300、X550、X600、X700、X800、X850)到近期的
Radeon(X1300、X1600、X1800、X1900、X1950)性能依次由低到高。
nVIDIA公司的主要品牌GeForce系列,其型号由早其的GeForce256、GeForce2(100/200/400)、GeForce3(200/500)、GeForce4
(420/440/460/4000/4200/4400/4600/4800)到GeForceFX(5200/5500/5600/5700/5800/5900/5950)、GeForce
(6100/6150/6200/6400/6500/6600/6800/)再到近其的GeForce(7300/7600/7800/7900/7950)性能依次由低到高。
版本级别
除了上述标准版本之外,还有些特殊版,特殊版一般会在标准版的型号后面加个后缀,常见的有:
ATi:
SE(SimplifyEdition简化版)通常只有64bit内存界面,或者是像素流水线数量减少。
Pro(ProfessionalEdition专业版)高频版,一般比标版在管线数量/顶点数量还有频率这些方面都要稍微高一点。
XT(eXTreme高端版)是ATi系列中高端的,而nVIDIA用作低端型号。
XTPE(eXTremePremiumEditionXT白金版)高端的型号。
XL(eXtremeLimited高端系列中的较低端型号)ATI最新推出的R430中的高频版
XTX(XTeXtreme高端版)X1000系列发布之后的新的命名规则。
CE(CrossfireEdition交叉火力版)交叉火力。
VIVO(VIDEOINandVIDEOOUT)指显卡同时具备视频输入与视频捕捉两大功能。
HM(HyperMemory)可以占用内存的显卡
nVIDIA:
ZT在XT基础上再次降频以降低价格。
XT降频版,而在ATi中表示最高端。
LE(LowerEdition低端版)和XT基本一样,ATi也用过。
MX平价版,大众类。
GTS/GS低频版。
GE比GS稍强点,其实就是超了频的GS。
GT高频版。
比GS高一个档次因为GT没有缩减管线和顶点单元。
GTO比GT稍强点,有点汽车中GTO的味道。
Ultra在GF7系列之前代表着最高端,但7系列最高端的命名就改为GTX。
GTX(GTeXtreme)加强版,降频或者缩减流水管道后成为GT,再继续缩水成为GS版本。
GT2双GPU显卡。
TI(Titanium钛)一般就是代表了nVidia的高端版本。
Go多用语移动平台。
TC(TurboCache)可以占用内存的显卡
开发代号
所谓开发代号就是显示芯片制造商为了便于显示芯片在设计、生产、销售方面的管理和驱动架构的统一而对一个系列的显示芯片给出的相应的基本的代号。
开发代号作用是降低显示芯片制造商的成本、丰富产品线以及实现驱动程序的统一。
一般来说,显示芯片制造商可以利用一个基本开发代号再通过控制渲染管线数量、顶点着色单元数量、显存类型、显存位宽、核心和显存频率、所支持的技术特性等方面来衍生出一系列的显示芯片来满足不同的性能、价格、市场等不同的定位,还可以把制造过程中具有部分瑕疵的高端显示芯片产品通过屏蔽管线等方法处理成为完全合格的相应低端的显示芯片产品出售,从而大幅度降低设计和制造的难度和成本,丰富自己的产品线。
同一种开发代号的显示芯片可以使用相同的驱动程序,这为显示芯片制造商编写驱动程序以及消费者使用显卡都提供了方便。
同一种开发代号的显示芯片的渲染架构以及所支持的技术特性是基本上相同的,而且所采用的制程也相同,所以开发代号是判断显卡性能和档次的重要参数。
同一类型号的不同版本可以是一个代号,例如:
GeForce(X700、X700Pro、X700XT)代号都是RV410;而Radeon(X1900、X1900XT、X1900XTX)代号都是R580等,但也有其他的情况,如:
GeForce(7300LE、7300GS)代号是G72;而GeForce(7300GT、7600GS、7600GT)代号都是G73等。
制造工艺
制造工艺指得是在生产GPU过程中,要进行加工各种电路和电子元件,制造导线连接各个元器件。
通常其生产的精度以um(微米)来表示,未来有向nm(纳米)发展的趋势(1mm=1000um1um=1000nm),精度越高,生产工艺越先进。
在同样的材料中可以制造更多的电子元件,连接线也越细,提高芯片的集成度,芯片的功耗也越小。
制造工艺的微米是指IC内电路与电路之间的距离。
制造工艺的趋势是向密集度愈高的方向发展。
密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。
微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。
芯片制造工艺在1995年以后,从0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米,再到目前主流的90纳米(0.09纳米)、65纳米等。
核心频率
显卡的核心频率是指显示核心的工作频率,其工作频率在一定程度上可以反映出显示核心的性能,但显卡的性能是由核心频率、显存、像素管线、像素填充率等等多方面的情况所决定的,因此在显示核心不同的情况下,核心频率高并不代表此显卡性能强劲。
比如9600PRO的核心频率达到了400MHz,要比9800PRO的380MHz高,但在性能上9800PRO绝对要强于9600PRO。
在同样级别的芯片中,核心频率高的则性能要强一些,提高核心频率就是显卡超频的方法之一。
显示芯片主流的只有ATI和NVIDIA两家,两家都提供显示核心给第三方的厂商,在同样的显示核心下,部分厂商会适当提高其产品的显示核心频率,使其工作在高于显示核心固定的频率上以达到更高的性能。
2、显存
类型
目前市场中所采用的显存类型主要有SDRAM,DDRSDRAM,DDRSGRAM三种。
SDRAM颗粒目前主要应用在低端显卡上,频率一般不超过200MHz,在价格和性能上它比DDR都没有什么优势,因此逐渐被DDR取代。
DDRSDRAM是DoubleDataRateSDRAM的缩写(双倍数据速率),它能提供较高的工作频率,带来优异的数据处理性能。
DDRSGRAM是显卡厂商特别针对绘图者需求,为了加强图形的存取处理以及绘图控制效率,从同步动态随机存取内存(SDRAM)所改良而得的产品。
SGRAM允许以方块(Blocks)为单位个别修改或者存取内存中的资料,它能够与中央处理器(CPU)同步工作,可以减少内存读取次数,增加绘图控制器的效率,尽管它稳定性不错,而且性能表现也很好,但是它的超频性能很差。
目前市场上的主流是DDR2和DDR3,。
位宽
显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。
目前市场上的显存位宽有64位、128位、256位和512位几种,人们习惯上叫的64位显卡、128位显卡和256位显卡就是指其相应的显存位宽。
显存位宽越高,性能越好价格也就越高,因此512位宽的显存更多应用于高端显卡,而主流显卡基本都采用128和256位显存。
显存带宽=显存频率X显存位宽/8,在显存频率相当的情况下,显存位宽将决定显存带宽的大小。
例如:
同样显存频率为500MHz的128位和256位显存,那么它俩的显存带宽将分别为:
128位=500MHz*128∕8=8GB/s,而256位=500MHz*256∕8=16GB/s,是128位的2倍,可见显存位宽在显存数据中的重要性。
显卡的显存是由一块块的显存芯片构成的,显存总位宽同样也是由显存颗粒的位宽组成。
显存位宽=显存颗粒位宽×显存颗粒数。
显存颗粒上都带有相关厂家的内存编号,可以去网上查找其编号,就能了解其位宽,再乘以显存颗粒数,就能得到显卡的位宽。
容量
这个就比较好理解了,容量越大,存的东西就越多,当然也就越好。
目前主流的显存容量,64MB、128MB、256MB、512MB等。
封装类型
显存封装形式主要有:
TSOP(ThinSmallOut-LinePackage)薄型小尺寸封装
QFP(QuadFlatPackage)小型方块平面封装
MicroBGA(MicroBallGridArray)微型球闸阵列封装,又称FBGA(Fine-pitchBallGridArray)
目前的主流显卡基本上是用TSOP和MBGA封装,其中又以TSOP封装居多.
速度
显存速度一般以ns(纳秒)为单位。
常见的显存速度有7ns、6ns、5.5ns、5ns、4ns,3.6ns、2.8ns、2.2ns、1.1ns等,越小表示速度越快\越好。
显存的理论工作频率计算公式是:
额定工作频率(MHz)=1000/显存速度×n得到(n因显存类型不同而不同,如果是SDRAM显存,则n=1;DDR显存则n=2;DDRII显存则n=4)。
频率
显存频率一定程度上反应着该显存的速度,以MHz(兆赫兹)为单位。
显存频率随着显存的类型、性能的不同而不同:
SDRAM显存一般都工作在较低的频率上,一般就是133MHz和166MHz,此种频率早已无法满足现在显卡的需求。
DDRSDRAM显存则能提供较高的显存频率,因此是目前采用最为广泛的显存类型,目前无论中、低端显卡,还是高端显卡大部分都采用DDRSDRAM,其所能提供的显存频率也差异很大,主要有400MHz、500MHz、600MHz、650MHz等,高端产品中还有800MHz或900MHz,乃至更高。
显存频率与显存时钟周期是相关的,二者成倒数关系,也就是显存频率=1/显存时钟周期。
如果是SDRAM显存,其时钟周期为6ns,那么它的显存频率就为1/6ns=166MHz;而对于DDRSDRAM,其时钟周期为6ns,那么它的显存频率就为1/6ns=166MHz,但要了解的是这是DDRSDRAM的实际频率,而不是我们平时所说的DDR显存频率。
因为DDR在时钟上升期和下降期都进行数据传输,其一个周期传输两次数据,相当于SDRAM频率的二倍。
习惯上称呼的DDR频率是其等效频率,是在其实际工作频率上乘以2,就得到了等效频率。
因此6ns的DDR显存,其显存频率为1/6ns*2=333MHz。
但要明白的是显卡制造时,厂商设定了显存实际工作频率,而实际工作频率不一定等于显存最大频率。
此类情况现在较为常见,如显存最大能工作在650MHz,而制造时显卡工作频率被设定为550MHz,此时显存就存在一定的超频空间。
这也就是目前厂商惯用的方法,显卡以超频为卖点。
3、技术
象素渲染管线
渲染管线也称为渲染流水线,是显示芯片内部处理图形信号相互独立的的并行处理单元。
在某种程度上可以把渲染管线比喻为工厂里面常见的各种生产流水线,工厂里的生产流水线是为了提高产品的生产能力和效率,而渲染管线则是提高显卡的工作能力和效率。
渲染管线的数量一般是以像素渲染流水线的数量×每管线的纹理单元数量来表示。
例如,GeForce6800Ultra的渲染管线是16×1,就表示其具有16条像素渲染流水线,每管线具有1个纹理单元;GeForce4MX440的渲染管线是2×2,就表示其具有2条像素渲染流水线,每管线具有2个纹理单元等等,其余表示方式以此类推。
渲染管线的数量是决定显示芯片性能和档次的最重要的参数之一,在相同的显卡核心频率下,更多的渲染管线也就意味着更大的像素填充率和纹理填充率,从显卡的渲染管线数量上可以大致判断出显卡的性能高低档次。
但显卡性能并不仅仅只是取决于渲染管线的数量,同时还取决于显示核心架构、渲染管线的的执行效率、顶点着色单元的数量以及显卡的核心频率和显存频率等等方面。
一般来说在相同的显示核心架构下,渲染管线越多也就意味着性能越高,例如16×1架构的GeForce6800GT其性能要强于12×1架构的GeForce6800,就象工厂里的采用相同技术的2条生产流水线的生产能力和效率要强于1条生产流水线那样;而在不同的显示核心架构下,渲染管线的数量多就并不意味着性能更好,例如4×2架构的GeForce2GTS其性能就不如2×2架构的GeForce4MX440,就象工厂里的采用了先进技术的1条流水线的生产能力和效率反而还要强于只采用了老技术的2条生产流水线那样。
顶点着色引擎数
顶点着色引擎(VertexShader),也称为顶点遮蔽器,根据官方规格,顶点着色引擎是一种增加各式特效在3D场影中的处理单元,顶点着色引擎
的可程式化特性允许开发者靠加载新的软件指令来调整各式的特效,每一个顶点将被各种的数据变素清楚地定义,至少包括每一顶点的x、y、z坐标,每一点顶点可能包函的数据有颜色、最初的径路、材质、光线特征等。
顶点着色引擎数越多速度越快。
3DAPI
API是ApplicationProgrammingInterface的缩写,是应用程序接口的意思,而3DAPI则是指显卡与应用程序直接的接口。
3DAPI能让编程人员所设计的3D软件只要调用其API内的程序,从而让API自动和硬件的驱动程序沟通,启动3D芯片内强大的3D图形处理功能,从而大幅度地提高了3D程序的设计效率。
如果没有3DAPI在开发程序时,程序员必须要了解全部的显卡特性,才能编写出与显卡完全匹配的程序,发挥出全部的显卡性能。
而有了3DAPI这个显卡与软件直接的接口,程序员只需要编写符合接口的程序代码,就可以充分发挥显卡的不必再去了解硬件的具体性能和参数,这样就大大简化了程序开发的效率。
同样,显示芯片厂商根据标准来设计自己的硬件产品,以达到在API调用硬件资源时最优化,获得更好的性能。
有了3DAPI,便可实现不同厂家的硬件、软件最大范围兼容。
比如在最能体现3DAPI的游戏方面,游戏设计人员设计时,不必去考虑具体某款显卡的特性,而只是按照3DAPI的接口标准来开发游戏,当游戏运行时则直接通过3DAPI来调用显卡的硬件资源。
目前个人电脑中主要应用的3DAPI有:
DirectX和OpenGL。
RAMDAC频率和支持最大分辨率
RAMDAC是RandomAccessMemoryDig
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 显卡 性能参数 解析