五年级数学广场 1.docx
- 文档编号:7342844
- 上传时间:2023-01-23
- 格式:DOCX
- 页数:31
- 大小:71.20KB
五年级数学广场 1.docx
《五年级数学广场 1.docx》由会员分享,可在线阅读,更多相关《五年级数学广场 1.docx(31页珍藏版)》请在冰豆网上搜索。
五年级数学广场1
第一课时
教学内容:
轴对称
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:
会利用轴对称的知识画对称图形。
教学准备:
幻灯片、课件。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:
“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。
或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
2.
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?
先画什么?
再画什么?
B、每条线段都应该画多长?
(2) 在研究的基础上,让学生用铅笔试画。
(3) 通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一-----第1、2题。
2、课外作业:
板书设计:
轴对称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
第二课时
教学内容:
课题:
旋 转
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。
并能正确判断图形的这两种变换。
结合学生的生活实际,初步感知平移和旋转现象。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:
能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:
幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:
摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:
平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:
旋转)。
今天我们就一起来学习“旋转”。
板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。
平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?
先说给你同组的小朋友听听!
再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。
我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。
刚才我们还见到了另一种现象,是什么呀?
(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?
”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!
起立,一起来左转2圈,右转2圈。
旋转可真有意思,你能用你周围的物体体验一下旋转吗?
现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
板书设计:
旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
第三课时
教学内容:
欣赏设计
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:
幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?
先让学生边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。
说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
教学反思:
第四课时
教学内容:
因数和倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:
看你能不能读懂下面的算式?
出示:
因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:
你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:
你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?
学生写算式。
师:
谁来出一个算式考考全班同学?
5、师:
今天我们就来学习因数和倍数。
(出示课题:
因数倍数)
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:
18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:
汇报
(18的因数有:
1,2,3,6,9,18)
师:
说说看你是怎么找的?
(生:
用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:
18的因数中,最小的是几?
最大的是几?
我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:
1,2,3,4,6,9,12,18,36
师:
你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:
这样写可以吗?
为什么?
(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?
(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:
如18的因数
小结:
我们找了这么多数的因数,你觉得怎样找才不容漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:
2、4、6、8、10、16、……
师:
为什么找不完?
你是怎么找到这些倍数的?
(生:
只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?
最大的你能找到吗?
2、让学生完成做一做1、2小题:
找3和5的倍数。
汇报3的倍数有:
3,6,9,12
师:
这样写可以吗?
为什么?
应该怎么改呢?
改写成:
3的倍数有:
3,6,9,12,……
你是怎么找的?
(用3分别乘以1,2,3,……倍)
5的倍数有:
5,10,15,20,……
师:
表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数3的倍数5的倍数
师:
我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?
你有什么收获呢?
第五课时
教学内容:
2、5的倍数的特征
教学目标:
1、掌握2、5倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
4、培养学生的概括能力。
教学重点和难点:
1、是2、5倍数的数的特征。
2、奇数和偶数的概念。
教学用具:
小黑板。
教学过程:
一、复习准备
1、提问。
①说出20的全部因数。
②说出5个8的倍数。
③26的最小因数是几?
最大因数是几?
最小的倍数是几?
2、按要求在集合圈里填上数。
二、学习新课:
(一)2的倍数的特征。
1、教师:
(练习2)右边集合圈里的数与左边圈里的数是什么关系?
教师:
请观察右边圈里的数,它们的个位数有什么特点?
(个位上是0,2,4,6,8。
)
教师:
请再举出几个2的倍数,看看符不符合这个特点?
学生随口举例。
教师:
谁能说一说是2的倍数的数的特征?
学生口答后老师板书:
个位上是0,2,4,6,8的数,都是2的倍数。
2、口答练习:
(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。
学生口答完后,老师介绍:
奇数和偶数的定义
板书:
上面两个集合圈上补写出“偶数”,“奇数”。
教师:
上面两个集合圈里该不该打省略号?
为什么?
学生讨论后老师说明:
在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:
奇数、偶数在我们日常生活中你遇到过吗?
习惯上称它们为什么数?
(单数、双数。
)
3、练习:
(先分小组小说,再全班统一回答。
)
①说出5个2的倍数。
(要求:
两位数。
)
②说出3个不是2的倍数的三位数。
③说出15~35以内的偶数。
④50以内的偶数有多少个?
奇数有多少个?
(二)5的倍数的特征。
1、教师先在黑板上画出两个集合圈,然后提出要求:
你们能不能用与研究2的倍数的特征的相同方法,找出5的倍数的特征?
学生自己动手填数、观察、讨论。
老师巡视过程中选一位同学板书填空。
教师:
说一说5的倍数的特征?
教师:
请举几个多位数验证。
教师:
再说一说什么样的数是5的倍数。
板书:
个位上是0或者5的数,都是5的倍数。
2、练习:
①按从小到大的顺序,说出50以内5的倍数。
②(投影片)下面哪些数是5的倍数?
240,345,431,490,545,543,709,725,815,922,986,990。
③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。
这些数有什么特点?
12,25,40,80,275,320,694,720,886,3100,3125,3004。
学生口答后教师板书:
个位数字是0。
④教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。
三、巩固反馈:
1、在1~100的自然数中,2的倍数有()个,5的倍数数有()个。
2、比75小,比50大的奇数有()。
3、个位是()的数同时是2和5的倍数。
4、用0,7,4,5,9五个数字组成2的倍数;5的倍数;同时是2和5的倍数的数。
四、全课总结:
这节课你学会了什么?
有什么收获?
第六课时
教学内容:
3的倍数的特征
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:
是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:
同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?
谁能猜测一下?
生1:
个位上是3、6、9的数是3的倍数。
生2:
不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:
另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:
看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?
今天我们共同来研究。
(揭示课题)
师:
先请在下表中找出3的倍数,并做上记号。
(教师出示百以内数表,学生人手一张。
在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。
)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。
(教师出示百以内数表,学生利用p18的表。
在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。
)(如下图)
师:
请观察这个表格,你发现3的倍数什么特征呢?
把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:
我发现10以内的数只有3、6、9是3的倍数。
生2:
我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
3的倍数生3:
我全部看了一下,刚才前面这位同学的猜想是不对的,个位上0~9这十个数字都有可能。
师:
个位上的数字没有什么规律,那么十位上的数有规律吗?
生:
也没有规律,1~9这些数字都出现了。
师:
其他同学还有什么发现吗?
生:
我发现3的倍数按一条一条斜线排列很有规律。
师:
你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:
从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:
十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:
我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:
这是一个重大发现,其他斜线呢?
生1:
我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:
“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:
我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:
现在谁能归纳一下3的倍数有什么特征呢?
生:
一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:
实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:
一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:
刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?
请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
四、课堂小结:
这节课你有什么收获
第七课时
教学内容:
:
质数和合数
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:
(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
学生独立思考,然后全班交流。
2、师:
这样的四个小正方形能拼出几个不同的长方形?
学生各自独立思考,想像后举手回答。
3、师:
同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:
我看到许多同学不用画就已经知道了。
(指名说一说)
4、师:
同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
学生几乎是异口同声地说:
会越多。
师:
确定吗?
(引导学生展开讨论。
)
5、师:
同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。
你觉得当小正方形的个数是什么数的时候,只能拼一种?
什么情况下拼得的长方形不止一种?
并举例说明。
先让学生小组讨论,然后全班交流,师根据学生的回答板书。
师:
同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。
那究竟什么样的数叫质数,什么样的数叫合数呢?
学生独立思考后,在小组内进行交流,然后再全班交流。
引导学生总结质数和合数的概念,结合学生回答,教师板书:
(略)
6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:
那你们认为“1”是什么数?
让学生独立思考,后展开讨论。
二、动手操作,制质数表。
1、师出示:
73。
让学生思考着它是不是质数。
师:
要想马上知道73是什么数还真不容易。
如果有质数表可查就方便了。
(同学们都说“是呀”。
)
师:
这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?
谁来说说自己的想法?
(让学生充分发表自己的想法。
)
2、让学生动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
第八课时
教学内容:
《倍数和因数》整理和复习
教学目标:
1、通过整理与复习,使学生系统掌握因数、倍数、2、3、5的倍数的特征、奇数、偶数、素数、合数的特征与联系,使学生形成一定的知识网络。
2、使学生在理解以上概念的基础上,建立一定的数感,能对一些数做出正确判断。
能灵活用这部分知识解决生活中的实际问题,体验数学和日常生活密切相关。
3、通过合作交流等活动培养学生思维能力、说理能力,使学生感受到学习的快乐,使每个学生得到不同的发展。
教学重点:
1、复习整理这一单元的概念,使其在学生头脑中形成网络。
2、利用所学知识解决实际问题。
教学难点:
1、复习整理这一单元的概念,使其在学生头脑中形成网络。
2、利用所学知识解决实际问题。
教学过程:
一、创设情境,导入复习。
师:
今天老师还给你们带来了一群好朋友,
想不想知道他们是谁?
板书:
1、2、3、4、5、6、7,如果我往下写,能写完吗?
为什么?
生:
连续的自然数。
二、回顾整理,建构网络。
师:
你能给连续的自然数分类吗?
生1:
可以分成奇数和偶数。
教师板书课题:
奇数和偶数
师:
在这些数中哪些是偶数?
生:
2、4、6。
师:
什么样的数是偶数?
生:
是2的倍数的数,是偶数。
师:
是2的倍数有什么特征?
生:
个位上是2、4、6、8、0的数,是2的倍数。
师:
这句话还可以怎么说?
生:
个位上是2、4、6、8、0的数,有因数2。
师:
不是2的倍数的数是什么数?
生:
不是2的倍数的数是奇数。
师:
举例。
生:
1、3、5、7………
师:
以后我们判断一个数是奇数还是偶数,只要看什么?
生:
只要看它们是不是2的倍数。
师:
还可以看什么?
生:
看这个数的个位。
个位上是2、4、6、8、0的数都是偶数,个位上是1、3、5、7、9的数,都是奇数。
师:
奇数和偶数都是自然数,根据是否是2的倍数,我们可以将自然数分为奇数和偶数。
板书:
是否是2的倍数{
师:
还可以怎样分?
生:
可以分成素数、合数、1。
板书:
素数、合数、1。
师:
什么叫素数?
生1:
只有1和它本身两个因数的数,叫做素数。
师:
还有其他名称吗?
生:
也叫做质数。
师:
它有几个因数?
生:
2个。
师:
如果一个数的因数除了1和它本身还有其他的因数,这样的数叫什么?
生:
合数。
师:
这些数(1、2、3、4、5、6、7……)中有吗?
生:
4、6。
师:
它有几个因数?
生:
3个或3个以上。
师:
我们研究的素数、合数和1也是自然数,是根据什么来分类的?
生:
根据因数的多少。
板书:
因数的多少{
师:
个位上是0的数是2的倍数还是几的倍数?
生:
5的倍数。
师:
5的倍数的特征个位上是0还可以是几。
生:
5。
师:
除了2和5的倍数的特征,这单元还学了几的特征。
生:
3的倍数的特征。
师:
3的倍数有什么特征?
生:
各个位上的数的和是3的倍数,这个数是3的倍数。
师:
这单元我们还讲了因数与倍数,这些数几和几有因数与倍数的关系?
生:
4是2的倍数,2是4的因数。
生:
6是2的倍数,还是3的倍数。
2和3都是6的因数。
师:
6的因数还有吗?
6的倍数有哪些:
生:
1和6是6的因数。
6的倍数有6、12、18、24……
师:
那么一个数的因数有什么特征。
生:
因数的个数是有限的,最小是1,最大是它本身。
师:
那么一个数的倍数有什么特征?
生:
倍数的个数是无限的,最小是它本身,没有最大的。
师:
光说不练是假把势,下面老师来靠考考你们。
三、重点复习,强化提高。
(一)、基本练习:
1、填空
1)在2、15、22、14、60、55、13、59、11、42、99、43、20、45、19、62、29、50中,2的倍数有:
3的倍数有:
5的倍数有:
是2的倍数又是3的倍数有:
是2的倍数又是5的倍数:
是3的倍数又是5的倍数:
有因数2、3、5的数有:
。
2)1--20各数中最大的质数是(),最小的合数是()。
3)填素数:
21=()+()=()×()=()-()
4)20以内,最小的素数与最大的合数的和是(),积是()。
5)一个最小的三位数,既是2的倍数,又是3的倍数,又有因数5,这个数是()。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 五年级数学广场 年级 数学 广场