五年级数学知识点整理.docx
- 文档编号:7216235
- 上传时间:2023-01-21
- 格式:DOCX
- 页数:13
- 大小:29.26KB
五年级数学知识点整理.docx
《五年级数学知识点整理.docx》由会员分享,可在线阅读,更多相关《五年级数学知识点整理.docx(13页珍藏版)》请在冰豆网上搜索。
五年级数学知识点整理
第一单元小数除法
1.小数除法的意义:
与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另个因数的运算。
2.小数除法的计算法则:
(1)除数是整数:
①按照整数除法的法则去除;②商的小数点要和被除数的小数点对齐(重点!
)
③每一位商都要写在被除数相同数位的上面。
④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
⑤除得的商的哪一数位上不够商,就在那一位上写0占位。
(2)除数是小数:
①先看除数中有几位小数,就把除数和被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足;②然后按照除数是整数的小数除法计算。
3、商不变的规律:
被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。
简言之,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。
4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a倍。
被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a倍。
5、被除数比除数大的,商大于1。
被除数比除数小的,商小于1。
6、一个数(0除外)除以1,商等于原来的数。
(一个数除以1,还等于这个数)
一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
0除以一个非零的数还得0。
0不能作除数。
7、
汉语表达
A除以B
A除B
A去除B
A被B除
列式
A÷B
B÷A
B÷A
A÷B
8、近似值相关知识点:
(1)求商的近似值:
计算时要比保留的小数多一位。
求积的近似值:
计算出整个积的值后再去近似值。
(2)取商的近似值的方法:
“四舍五入”法、“进一法”和“去尾法”
在解决问题的时候,可以根据实际情况选择“进一法”和“去尾法”取商的近似值。
(3)保留商的近似值,小数末尾的0不能去掉。
9、循环小数相关知识点:
(1)小数分类:
可以分为无限小数和有限小数。
小数部分的位数是有限的小数,叫做有限小数。
小数部分是无限的小数叫做无限小数。
循环小数就是无限小数中的一种。
(2)循环小数的定义:
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(3)循环小数必须满足的条件:
①必须是无限小数;②一个数字或者几个数字依次不断重复出现。
(4)循环节的定义:
一个循环小数的小数部分,依次不断重复出现的一个数字或者几个数字,叫做这个循环小数的循环节。
如5.33……循环节是3。
7.14545……的循环节是45。
(5)循环小数的记法:
①省略后面的“……”号;②在第一个循环节首尾的数字上分别加点。
如:
5.33……=5.3(3上面有一个点),读作五点三,三的循环7.14545……=7.145(4和5上面分别有一个点),读作七点一四五,四五的循环。
(6)循环小数一定是无限小数,无限小数不一定是循环小数。
10、竖式中的小数点和数位的对齐方式:
在加法和减法中,必须小数点对齐;在乘法中,要末尾对齐;在除法时,商的小数点要和被除数的小数点对齐。
11、除法性质:
a÷b÷c=a÷(b×c)
推广:
(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c
第二单元轴对称和平移
具体目标:
(1)图形的平移
①通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。
②能按要求作出简单平面图形平移后的图形。
③利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。
(2)图形的旋转
①通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心
连线所成的角彼此相等的性质。
②了解平行四边形、圆是中心对称图形。
③能够按要求作出简单平面图形旋转后的图形。
④欣赏旋转在现实生活中的应用。
⑤探索图形之间的变换关系(轴对称、平移、旋转及其组合)。
⑥灵活运用轴对称、平移和旋转的组合进行图案设计。
(3)图形的轴对称
①通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
②能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并
能指出对称轴。
③探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。
④欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称
进行图案设计。
三、知识考点梳理
知识点一、平移
1、平移概念:
把一个图形整体沿一方向移动,得到一个新的图形,图形的这种移动,叫做平移变换,简称平移。
2、平移变换的性质
①对应线段平行(或共线)且相等;对应点所连结的线段平行且相等,因为经过平移,图形的每个点都
沿同一个方向移动了相同的距离,平移变换前后的两条对应线段的四个端点所围成的四边形为平行四
边形(四点共线除外).
②对应角分别相等,且对应角的两边分别平行,方向一致.
③平移后的图形与原图形全等,因为平移只改变图形位置,不改变图形的形状和大小.
3、平移作图步骤
①确定平移的方向和距离;
②根据对应点的连线平行(或在一条直线上)且相等作出图形各关键点的对应点;
③按原图形的连结方式顺次连结各点.
知识点二、旋转
1、旋转概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
2、中心对称与中心对称图形
中心对称:
把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点。
中心对称图形:
把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.
3、旋转变换的性质
图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.
4、旋转作图步骤
①分析题目要求,找出旋转中心,确定旋转角.
②分析所作图形,找出构成图形的关键点.
③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.
④按原图形连结方式顺次连结各对应点.
5、中心对称作图步骤
①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.
②按原图形的连结方式顺次连结对称点即得所作图形.
知识点三、轴对称
1、轴对称与轴对称图形
轴对称:
把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
轴对称图形:
把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
2、轴对称变换的性质
①关于直线对称的两个图形是全等图形.
②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.
③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.
④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.
3、轴对称作图步骤
①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点。
②按原图形的连结方式顺次连结对称点即得所作图形.
综上:
1、图形变换与图案设计的基本步骤
①确定图案的设计主题及要求;
②分析设计图案所给定的基本图案;
③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;
④对图案进行修饰,完成图案。
2、平移、旋转和轴对称之间的联系
一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.
第三单元倍数与因数
1、整除:
被除数、除数和商都是自然数,并且没有余数。
大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
找因数的方法:
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按能不能被2整除来分:
奇数、偶数
奇数:
不能被2整除的数。
偶数:
能被2整除的数。
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:
质数、合数
质数:
有且只有两个因数,1和它本身
合数:
至少有三个因数,1、它本身、别的因数
1:
只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:
有8个(2、3、5、7、11、13、17、19)
100以内的质数:
2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数(一个合数写成几个质数相乘的形式)
5、公因数、最大公因数
几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质;⑸质数与比它小的合数互质;
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
6、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
7、因数和倍数的关系
例如:
2х6=12
2和6是12的因数,12是2和6的倍数。
【知识点1】因数与倍数之间的关系是相互的,不能单独存在。
只能说谁
是谁的因数,谁是谁的倍数。
不能说谁是因数,谁是倍数。
例如:
2.5х6=15
2.5和6是15的因数,15是2.5和6的倍数。
(╳)
这句话是错误的。
【知识点2】在研究因数和倍数的时候,我们所说的数指的是非0的整数。
(不包括小数、分数)
例如:
36的因数有()。
【知识点3】确定一个数的所有因数,我们应该从1的乘法口诀依次找出。
如:
1×36=36、2×18=36、3×12=36、4×9=36、6×6=36
因此36的所有因数有:
1、2、3、4、6、9、12、18、36。
【知识点4】重复的和相同的只算一个因数。
【知识点5】一个数的因数的个数是有限的,
一个数的最小因数是1,最大的因数是它本身。
例如:
7的倍数()。
【知识点6】确定一个数的倍数,同样依据乘法口诀,
如:
1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……
因此7的倍数有:
7、14、21、28、35、42……
【知识点7】一个数的倍数的个数是无限的,
最小的倍数是它本身,没有最大的倍数。
【知识点8】有前提条件的情况下确定倍数与因数
第四单元多边形的面积
1、长方形面积=长×宽 字母公式:
s=ab
长方形周长=(长+宽)×2 字母公式:
c=(a+b)×2
(长=周长÷2-宽;宽=周长÷2-长)
★长方形中面积、周长与长和宽之间的变化关系:
(1)长方形的长加宽等于长方形周长的一半。
即a+b=c÷2
(2)当长方形的周长不变时,长与宽的差越大,这个长方形的面积就越小;反之,长与宽的差越小,这个长方形的面积就越大。
(3)当长方形的面积不变时,长与宽的差越大,这个长方形的周长就越长;长与宽的差越小,这个长方形的周长就越短。
(4)长方形框架拉成平行四边形,周长不变,面积变小。
2、正方形面积=边长×边长 字母公式:
s=a²或者s=a×a
正方形周长=边长×4 字母公式:
c=4a或者c=a×4
3、平行四边形面积=底×高 字母公式:
s=ah
★平行四边形面积公式的推导过程:
剪拼、平移
沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
★等底等高的平行四边形面积相等。
4、三角形面积=底×高÷2 字母公式:
s=ah÷2
(底=面积×2÷高;高=面积×2÷底 )
★三角形面积公式的推导过程:
旋转、平移
将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。
一个三角形的面积是这个平行四边形的面积一半。
因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。
用字母表示S=a×h÷2。
★等底等高的三角形面积相等。
★等底等高的三角形和平行四边形面积关系:
等底等高的平行四边形面积是三角形面积的2倍;等底等高的三角形面积是平行四边形面积的一半。
5、梯形面积=(上底+下底)×高÷2 字母公式:
s=(a+b)×h÷2
(上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底))
梯形面积公式的推导过程:
旋转、平移
将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。
因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2用字母表示S=(a+b)×h÷2.
6、计算圆木、钢管等的根数:
(顶层根数+底层根数)×层数÷2
7、组合图形:
转化成已学的简单图形,通过加、减进行计算。
8、有关规律:
★在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
★用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。
★1三角形和平行四边形面积相等时,若高相等,则三角形的底是平行四边形的2倍,平行四边形的底是三角形的一半。
★2三角形和平行四边形的面积相等时,若底相等,则三角形的高是平行四边形的2倍,平行四边形的高是三角形的一半。
★3三角形和平行四边形等底等高时,则三角形的面积是平行四边形的一半,平行四边形的面积是三角形的2倍。
★在直角三角形中,斜边最长。
第五单元分数的意义
分数的意义
1、分数的意义:
把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:
把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:
除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数=
用字母表示:
a÷b=
(b≠0)。
4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
二、真分数和假分数
1、真分数和假分数:
①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:
①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本性质
1、分数的基本性质:
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、约分
1、最大公因数:
几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
2、两个数的公因数和它们最大公因数之间的关系:
所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
3、互质数:
公因数只有1的两个数叫做互质数。
4、两个数互质的特殊判断方法:
①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
5、求最大公因数的方法:
①倍数关系:
最大公因数就是较小数。
②互质关系:
最大公因数就是1
③一般关系:
从大到小看较小数的因数是否是较大数的因数。
6、最简分数:
分子和分母只有公因数1的分数叫做最简分数。
7、约分:
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)
五、通分
1、最小公倍数:
几个数共有的倍数叫做它们的公倍数,其中最小的一个叫最小公倍数。
2、两个数的公倍数和它们的最小公倍数之间的关系:
几个数的公倍数是它们最小公倍数的倍数。
3、通分:
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(通分时,公分母一般为几个数的最小公倍数)。
4、求最小公倍数的方法:
①倍数关系:
最小公倍数就是较大数。
②互质关系:
最小公倍数就是它们的乘积。
③一般关系:
大数翻倍(从小到大看较大数的倍数是否是较小数的倍数)。
5、分数的大小比较:
①同分母分数,分子大的分数就大,分子小的分数就小;
②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
6、约分和通分的依据都是分数的基本性质。
六、分数和小数的互化:
1、小数化分数:
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,
去掉小数点作分子,能约分的必须约成最简分数;
2、分数化小数:
用分子除以分母,除不尽的按要求保留几位小数。
(一般保留两位小数。
)
3、判断分数是否能化成有限小数的方法:
①判断分数是否是最简分数;如果不是最简分数,先把它化成最简分数;
②把分数的分母分解质因数:
如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数;
如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
第六单元组合图形的面积
一、知识要点
组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:
一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:
1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;
2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;
3.适当采用增加辅助线等方法帮助解题;
4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
第七单元可能性
1、确定事件和不确定事件
(1)、确定事件
必然事件:
生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。
不可能事件:
有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。
(2)、不确定事件:
有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件
(3)、
必然事件
确定事件
事件不可能事件
不确定事件
2、不确定事件发生的可能性
一般地,不确定事件发生的可能性是有大小的。
必然事件发生的可能性是1
不可能事件发生的可能性是0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学 知识点 整理