初中数学九年级上册第23章《图形的旋转》优秀教案.docx
- 文档编号:7024372
- 上传时间:2023-01-16
- 格式:DOCX
- 页数:19
- 大小:119KB
初中数学九年级上册第23章《图形的旋转》优秀教案.docx
《初中数学九年级上册第23章《图形的旋转》优秀教案.docx》由会员分享,可在线阅读,更多相关《初中数学九年级上册第23章《图形的旋转》优秀教案.docx(19页珍藏版)》请在冰豆网上搜索。
初中数学九年级上册第23章《图形的旋转》优秀教案
新人教版初中数学九年级上册第23章《图形的旋转》教案
23.1图形的旋转
(1)
学校
主备人
时间
设计
理念
让学生经历观察、操作等过程,了解图形旋转的概念,发展学生的空间观念,培养运动几何的观点,增强审美意识,让学生通过独立思考、自主探究和合作交流体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.
教
学
目
标
1、知识与技能:
了解旋转及对应点的有关概念,并能应用它们解决一些问题.
2、过程与方法:
让学生感受生活中的几何,通过不同的情境设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.
3、情感态度与价值观:
经历图形旋转的探索活动,发展空间观念,培养运动几何的观点,增强审美意识.
重点
旋转及对应点的有关概念及其应用.
难点
从活生生的数学中抽象出概念.
方法
体验、探究式教学法
课型
新授课
教学过程
教学环节
教学内容
师生活动
设计意图
一、创
设
情
境
1.向学生展示有关的图片:
(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)
(2)大风车的转动;
(3)飞速转动的电风扇叶片;
(4)汽车上的括水器
(5)由平面图形转动而产生的奇妙图案。
2、提出问题:
这些情境中的转动现象,有什么共同特征?
用课件展示图片并显示现实生活中部分物体的旋转现象
学生观察图片
学生思考,归纳它们的共同特征。
让学生再举一些类似的例子
通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。
初步感受转动的本质是绕着某一点,旋转一定的角度这两点,引导学生寻找、认识生活中的旋转现象,并揭示本节的研究课题-----图形的旋转。
二、自
主
探
究
1.建立旋转的概念
请同学们尝试用自己的语言来描述上述图形的运动现象.
2、给出旋转的定义:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。
重点突出旋转的三个要素:
旋转中心、旋转方向和旋转角度。
3、结合图形理解对应点、对应线段、对应角、旋转中心、旋转角的意义。
学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,
教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。
完成本节课的两个学习目标:
①点明图形旋转中对应点、对应线段及对应角的概念;②让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。
三、尝
试
应
用
1、如图,△ABO绕点O旋转得到△CDO,则:
点B的对应点是点_____;线段OB的对应线段是线段______;线段AB的对应线段是线段______;∠A的对应角是______;∠B的对应角是______;旋转中心是点______;旋转的角是______。
2、如图,如果正方形CDEF与正方形ABCD是一边重合的两个正方形,那么正方形CDEF能否看成是正方形ABCD旋转得到?
如果能,请指出旋转中心、旋转方向、旋转角度及对应点。
学生独立思考并解答,
学生讲解,相互评价。
对于第2题要注重引导学生多角度分析解决。
及时巩固新知,使每个学生都有收获.
感受成功的喜悦,肯定探索活动的意义。
加深对旋转概念的理解,及时巩固新知识。
四、巩
固
提
高
1、如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.
在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A、B分别移动到什么位置?
(3)旋转角是什么?
(4)AO与DO的长有什么关系?
BO与EO呢?
(5)∠AOD与∠BOE有什么大小关系?
学生先独立思考,然后分组交流,最后学生上台讲解。
教师给予评价。
学生从实际图形提炼出数学图形,利用旋转解决问题。
根据学生的具体情况,遵循“循序渐进”的原则,层层递进,逐步形成技能。
五、体
验
收
获
通过本节课的学习,你有什么收获(知识与方法)?
还有什么困惑?
对自己在本节课的表现有什么评价?
学生小结和交流学习的收获、数学思想的感悟、学习方法的体会等,或提出疑问进行讨论;教师帮助学生整理所学知识,引导学生进一步体会探究学习的过程和方法,领会数学的思想。
学生可能只注重于知识小结而忽略了方法的总结,在方法小结时,需要教师的合作帮助,让学生养成良好的学习数学的方法和习惯。
六、实
践
延
伸
必做题:
课本P592、3
选做题:
请设计一个绕一点旋转60°后能与自身重合的图形.
九年级上册第23章第2课时教案
23.1图形的旋转
(2)
学校
主备人
时间
设计
理念
学生通过实验探究获得旋转的基本性质,进一步体会旋转的数学内涵,体验运用知识解决问题的成功感,享受学习数学的乐趣.
教
学
目
标
1、知识与技能:
理解图形旋转的性质,并能运用这些性质解决问题。
2、过程与方法:
经历探索、运用图形旋转性质的过程,体会解决问题策略的多样性。
3、情感态度与价值观:
让学生经历观察、操作等过程,进一步发展空间观念,培养学生从复杂图形中提炼简单图形的能力。
重点
运用操作实验得出图形旋转的三条基本性质
难点
运用实验探究得出图形旋转的三条基本性质
方法
体验、探究式教学
课型
新授课
教学过程
教学环节
教学内容
师生活动
设计意图
一、创
设
情
境
请大家在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形洞(△ABC),然后围绕O转动硬纸板,再描出这个挖掉的三角形洞(△A′B′C′),移开硬纸板。
请大家运用刻度尺和量角器度量线段和有关角,试着归纳所得的结论.
分组实验
分组交流所得的结论
教师进行指导并参与讨论交流
通过实验,培养学生的动手能力、观察能力、探究能力,为下一环节做准备。
二、自
主
探
究
1.△ABC在旋转过程中,哪些发生了变化?
哪些没有改变?
2.由实验还可得出哪些结论?
学生口述,教师板书旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
根据图形思考老师所给的问题,然后分组讨论,教师参与讨论交流,最后一组推荐一人上台回答结论
1.OA=OA′,OB=OB′,OC=OC′
2.∠AOA′=∠BOB′=∠COC′
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作,师生共同归纳出旋转的性质。
培养学生归纳能力及与人合作交流的能力,充分体现了教师为主导,学生为主体的教学方法。
同时以问题为导引,逐步对旋转的性质进行探究,这样既突出了重点,又突破了难点。
三、尝
试
应
用
三、尝
试
应
用
1、已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形。
2、如图:
△ABC是等边三角形,D是BC边上的一点,△ABD经过旋转后到达△ACE的位置。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果M是AB上的中点,那么经过上述的旋转后,点M到了
什么位置?
第2题图
3、如图∠C=30°,△ABC绕A点逆时针旋转30°后得到△AB/C/,则图中度数是30°的角有__________
4、如图将△ABC绕C点逆时针旋转30°后,点B落在B′,点A落在A′点位置,若A′C⊥AB,求∠B′A′C的度数。
5、如图:
E是正方形ABCD中CD边上的一点,以点A为中心,把△ADE顺时针旋转90°。
画出旋转后的位置?
学生独立完成,一名同学上台展示并讲解画法。
学生观察、思考、回答,教师给予评价。
学生独立思考并解答,分组交流,学生上台讲解。
学生独立思考并写出解题过程,相互评价,归纳解决问题的方法。
教师强调旋转角的确定方法。
学生先独立画图,然后上台讲解,不同意见的同学上台展示。
通过作图理解旋转的性质。
让学生通过观察图形的特点,发现图形的旋转关系,巩固旋转的性质。
进一步体会旋转的性质。
体会旋转的妙用,渗透转化的数学思想。
培养学生提炼基本图形的能力。
加深对旋转性质的理解,培养学生解决问题策略的多样性。
四、巩
固
提
高
1、如图,小明坐在秋千上,秋千旋转了80°.请在图中小明身上任意选一点P,利用旋转性质,标出点P的对应点.
第1题图
2、如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.
第2题图
3、如图E是正方形ABCD内一点,将△ABE绕点B顺时针方向旋转到△CBF,其中EB=3cm,则BF=_____cm,∠EBF=______
学生先独立观察,
然后回答,
师生给予评价。
学生先独立分析,再分组交流,充分交流之后学生讲解解决问题的思路,其他同学相互补充。
师生共同归纳出解决问题的方法。
学生先独立解决问题,然后分组交流,最后每组派一名代表上台讲解,老师给予评价并提炼出深度。
培养学生用数学知识解决实际问题的能力。
培养学生综合运用知识的能力,形成解决问题的方法。
培养学生从复杂图形中提炼出基本图形,体会运用旋转解决问题的方法。
五、体
验
收
获
通过这节课的学习你收获了哪些知识与方法?
还有哪些困惑?
你对你这节课的表现有什么评价?
学生归纳,教师补充,对本节课的知识与方法进行升华。
培养学生概括能力,使知识形成体系,并渗透数学思想方法。
六、实
践
延
伸
必做题:
课本P604、5
选做题:
已知,如图边长为a的正方形EFOG绕与之边长相等的正方形ABCD的中心O旋转任意角度,求图中阴影部分的面积.
九年级上册第23章第3课时教案
23.1图形的旋转(3)
学校
主备人
时间
设计
理念
让学生经历不同的旋转中心、不同的旋转角度会出现不同的图案效果的过程,培养学生多角度分析问题的能力,通过图案设计培养学生的审美能力。
教
学
目
标
1、知识与技能:
理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.
2、过程与方法:
经历复习图形旋转的有关概念和性质,分析不同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类.
3、情感态度与价值观:
让学生经历应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.
重点
用旋转的有关知识画图.
难点
根据需要设计美丽图案.
方法
体验、探索式教学方法
课型
新授课
教学过程
教学环节
教学内容
师生活动
设计意图
一、复习
引入
1.问题:
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.作图题:
如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.
老师提问,学生回答.
学生独立作图,然后师生共同归纳:
要作出△AOB旋转后的三角形,应找出三方面:
第一,旋转中心:
O;
第二,旋转角:
∠BOG;第三,A点旋转后的对应点:
A′.
复习旋转的性质,为设计图案做准备。
通过作图题让学生知道,作图应满足三要素:
旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.
二、自主
探究
二、自主
探究
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30°的旋转图形.
3、图案设计:
(1)、如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°的菊花图案.
(2)、如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,请同学画出图案,它还是原来的菊花吗?
选择不同的旋转中心、不同的旋转角来进行研究.
学生独立作图,两名同学上台展示。
画完之后相互批改、评价。
从画图中,师生共同归纳出:
旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
学生先独立思考,然后说出自己的想法,相互补充,得出结论:
只要以O为旋转中心、旋转角以所给的度数为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可。
分组画图,画完之后,在班内展示。
学生独立进行图案设计,教师指导有困难的同学。
展评学生的部分作品。
老师点评:
显然,画出后的图案不是菊花,而是另外的一种花了.
经历旋转中心不变,改变旋转角与旋转角不变,改变旋转中心进行作图的过程,感受不同的效果。
学生经历应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.
突出重点,突破难点。
培养学生能从不同的角度进行图案设计,体会分类的数学思想。
三、尝试
应用
1、把一个三角形进行旋转:
(1)、选择不同的旋转中心、不同旋转角,看看旋转的效果;
(2)、改变三角形的形状,看看旋转的效果。
2、.如图,如何作出该图案绕O点按逆时针旋转90°的图形.
3.下面的图形绕着一个点旋转120°后,能与原来的位置重合的是()
A.
(1),(4)B.
(1),(3)C.
(1),
(2)D.(3),(4)
学生独立设计,然后分组交流,相互评价。
学生先独立思考、作图,然后分组交流,形成方法:
要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.
学生思考片刻,进行抢答。
及时巩固新知,使每个学生都有收获;
感受成功的喜悦,肯定探索活动的意义。
培养学生思维的敏捷性。
四、巩固
提高
1、同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG可以看成把菱形ABCD以A为中心()
A.顺时针旋转60°得到的
B.顺时针旋转120°得到的
C.逆时针旋转60°得到的D.逆时针旋转120°得到的
2、如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.
(填“相等”或“不等”)
3、如图:
将等边△ABC向右平移得△CDE,连接AD与BE交于点F,BE交AC于点P,AD交CE于点Q.
(1)图中哪些三角形可以通过旋转互相得到?
(2)∠BFA等于多少度?
(3)连接P、Q,则△PCQ是什么三角形?
变式练习:
如果将等边△ABC绕C点顺时针方向旋转一个角度后得△CDE,则
(1)∠BFA等于多少度?
(2)△PCQ是什么三角形?
学生从不同的角度分析问题,对方法进行提炼。
学生先独立思考,然后交流,归纳方法。
运用旋转的性质解决问题。
学生先独立思考,然后分组交流,每组派代表上台讲解。
先独立分析图形,再分组交流,学生上台讲解,师生共同归纳解决问题的方法,形成策略。
从不同的角度分析问题,拓展学生的思路,培养学生的观察能力。
发散学生的思维,丰富学生的想象力,培养学生的创新能力。
体会旋转在解决问题时的妙用,渗透转化的数学思想。
综合运用平移与旋转的性质解决问题,提高学生综合运用知识的能力。
培养学生从复杂图形中提炼简单图形的能力,提高学生的想象力。
五、体验
收获
通过本节课的学习,你有什么收获(知识与方法)?
还有什么困惑?
对自己在本节课的表现有什么评价?
学生畅所欲言,谈谈自己的得与失。
学生提出的疑问,师生给予解答。
教师帮助学生整理所学知识,引导学生进一步体会探究学习的过程和方法,领会数学的思想。
注重方法的总结,让学生养成良好的学习数学的方法和习惯。
六、实践延伸
必做题:
课本P618、9
选做题:
请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图形的旋转 初中 数学 九年级 上册 23 图形 旋转 优秀 教案