高中立体几何测试题及答案理科.docx
- 文档编号:682909
- 上传时间:2022-10-12
- 格式:DOCX
- 页数:10
- 大小:289.40KB
高中立体几何测试题及答案理科.docx
《高中立体几何测试题及答案理科.docx》由会员分享,可在线阅读,更多相关《高中立体几何测试题及答案理科.docx(10页珍藏版)》请在冰豆网上搜索。
高中立体几何测试题及答案理科
立体几何测试题
1.如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小的余弦值;
2.已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且,F为棱BB1的中点,M为线段AC1的中点.
(1)求证:
直线MF//平面ABCD;
(2)求证:
平面AFC1⊥平面ACC1A1;
(3)求平面AFC1与平面ABCD所成二面角的大小.
3、在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:
BD⊥平面PAC;
(2)
(2)若PH=1,AD=2,求二面角B-PC-A的正切值;
4、如图,直三棱柱中,,是棱的中点,
(1)证明:
(2)求二面角的大小.
5.如图,是正四棱锥,是正方体,其中.
(Ⅰ)求证:
;
(Ⅱ)求平面与平面所成的锐二面角的大小;
(Ⅲ)求到平面的距离.
6.已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2a,AB=a,F为CD的中点.
(Ⅰ)求证:
AF⊥平面CDE;
(Ⅱ)求异面直线AC,BE所成角余弦值;
(Ⅲ)求面ACD和面BCE所成二面角的大小.
7.已知斜三棱柱,,,在底面上的射影恰为的中点,又知。
(I)求证:
平面;
(II)求到平面的距离;
(III)求二面角的大小
8.如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(I)求证:
A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点c到平面AB1D的距离.
参考答案
1、解:
(Ⅰ)平面ACE.
∵二面角D—AB—E为直二面角,且,
平面ABE.
(Ⅱ)连结BD交AC于C,连结FG,
∵正方形ABCD边长为2,∴BG⊥AC,BG=,
平面ACE,
由三垂线定理的逆定理得FG⊥AC.
是二面角B—AC—E的平面角
由(Ⅰ)AE⊥平面BCE,又,
∴在等腰直角三角形AEB中,BE=.
又直角
,
,
∴二面角B—AC—E大小的余弦值等于
2、解(Ⅰ)延长C1F交CB的延长线于点N,连结AN.因为
F是BB1的中点,
所以F为C1N的中点,B为CN的中点.
又M是线段AC1的中点,故MF//AN.
(Ⅱ)证明:
连BD,由直四棱柱ABCD—A1B1C1D1
可知:
平面ABCD,
又∵BD平面ABCD,
四边形ABCD为菱形,
在四边形DANB中,DA∥BN且DA=BN,所以四边形DANB为平行四边形.
故NA∥BD,平面ACC1A1.
ACC1A1.
(Ⅲ)由(Ⅱ)知BD⊥ACC1A1,又AC1ACC1A1,
∴BD⊥AC1,∵BD//NA,∴AC1⊥NA.
又由BD⊥AC可知NA⊥AC,
∴∠C1AC就是平面AFC1与平面ABCD所成二面角的平面角或补角.
在Rt△C1AC中,,
故∠C1AC=30°.
∴平面AFC1与平面ABCD所成二面角的大小为30°或150°
3.
4.【答案】
(1)在中,
得:
同理:
得:
面
(2)面
取的中点,过点作于点,连接
,面面面
得:
点与点重合
且是二面角的平面角
设,则,
既二面角的大小为
5.解:
(Ⅰ)连结AC,交BD于点O,连结PO,则PO⊥面ABCD,又∵,∴,∵,∴.
(Ⅱ)∵AO⊥BD,AO⊥PO,∴AO⊥面PBD,过点O作OM⊥PD于点M,连结AM,则AM⊥PD,∴∠AMO就是二面角A-PD-O的平面角,
又∵,∴AO=,PO=
∴,
即二面角的大小为.
(Ⅲ)用体积法求解:
解得,
即到平面PAD的距离为
6.解:
(Ⅰ)∵DE⊥平面ACD,AF平面ACD
∴DE⊥AF。
又∵AC=AD=C,F为CD中点
∴AF⊥CD,
∴AF⊥面CDE
∴AF⊥平面CDE。
(Ⅱ)∵
取DE中点M,连结AM、CM,则四边形AMEB为平行四边形
AM//BE,则∠CAM为AC与BE所成的角。
在△ACM中,AC=2a
由余弦定理得:
∴异面直线AC、AE所成的角的余弦值为。
(Ⅲ)延长DA。
EB交于点G,连结CG。
因为AB//DE,AB=DE,所以A为GD中点。
又因为F为CD中点,所以CG//AF。
因为AF⊥平面CDE,所以CG⊥平面CDE。
故∠DCE为面ACD和面BCE所成二面角的平面角易求∠DCE=45°
7.解:
(I)因为平面,
所以平面平面,
又,所以平面,
得,又
所以平面;
(II)因为,所以四边形为
菱形,
故,又为中点,知。
取中点,则平面,从而面面,
过作于,则面,
在中,,故,
即到平面的距离为。
(III)过作于,连,则,
从而为二面角的平面角,
在中,,所以,
在中,,
故二面角的大小为。
8.(I)证明:
连接A1B,设A1B∩AB1=E,连接DE.
∵ABC—A1B1C1是正三棱柱,且AA1=AB,
∴四边形A1ABB1是正方形,
∴E是A1B的中点,
又D是BC的中点,
∴DE∥A1C.
∵DE平面AB1D,A1C平面AB1D,
∴A1C∥平面AB1D.
(II)解:
在面ABC内作DF⊥AB于点F,在面A1ABB1内作FG⊥AB1于点G,连接DG.
∵平面A1ABB1⊥平面ABC,∴DF⊥平面A1ABB1,
∴FG是DG在平面A1ABB1上的射影,∵FG⊥AB1,∴DG⊥AB1
∴∠FGD是二面角B—AB1—D的平面角
设A1A=AB=1,在正△ABC中,DF=
在△ABE中,,
在Rt△DFG中,,
所以,二面角B—AB1—D的大小为
(III)解:
∵平面B1BCC1⊥平面ABC,且AD⊥BC,
∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.
在平面B1BCC1内作CH⊥B1D交B1D的延长线于点H,
则CH的长度就是点C到平面AB1D的距离.
由△CDH∽△B1DB,得
即点C到平面AB1D的距离是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 立体 几何 测试 答案 理科