传感器技术与应用课后习题答案.docx
- 文档编号:6743742
- 上传时间:2023-01-09
- 格式:DOCX
- 页数:14
- 大小:112.35KB
传感器技术与应用课后习题答案.docx
《传感器技术与应用课后习题答案.docx》由会员分享,可在线阅读,更多相关《传感器技术与应用课后习题答案.docx(14页珍藏版)》请在冰豆网上搜索。
传感器技术与应用课后习题答案
传感器技术与应用习题答案
习题1
l.1检测系统由哪几部分组成?
说明各部分的作用。
答:
检测系统是由被测对象、传感器、数据传输环节、数据处理环节和数据显示环节构成。
传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的。
数据传输、处理环节,又称之为测量电路,它的作用是将传感器的输出信号转换成易于测量的电压或电流信号。
数据显示记录环节是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。
常用的有模拟显示、数字显示和图像显示三种。
1.2传感器的型号有几部分组成?
各部分有何意义?
答:
传感器是由敏感元件、转换元件和测量电路组成,敏感元件:
直接感受被测量的变化,并输出与被测量成确定关系的某一物理量的元件,它是传感器的核心。
转换元件:
将敏感元件输出的物理量转换成适于传输或测量电信号的元件。
测量电路:
将转换元件输出的电信号进行进一步转换和处理的部分,如放大、滤波、线性化、补偿等,以获得更好的品质特性,便于后续电路实现显示、记录、处理及控制等功能。
1.3测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法?
如何进行?
答:
直接测量。
使用电压表进行测量,对仪表读数不需要经过任何运算,直接表示测量所需要的结果。
1.4某线性位移测量仪,当被测位移由4.5mm变到5.0mm时,位移测量仪的输出电压由3.5V减至2.5V,试求该仪器的灵敏度。
解:
灵敏度s=(3.5-2.5)v/(5.0-4.5)mm=2v/mm
1.5有三台测温仪表,量程均为0~800℃,精度等级分别为2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理?
答:
2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。
因此,应该选用1.5级的测温仪器
1.6什么是系统误差和随机误差?
准确度和精密度的含义是什么?
它们各反映何种误差?
答:
系统误差(简称系差):
在一定的条件下,对同一被测量进行多次重复测量,如果误差按照一定的规律变化,则把这种误差称为系统误差。
系统误差决定了测量的准确度。
系统误差是有规律性的,因此可以通过实验或引入修正值的方法一次修正给以消除。
随机误差(简称随差,又称偶然误差):
由大量偶然因素的影响而引起的测量误差称为随机误差。
对同一被测量进行多次重复测量时,随机误差的绝对值和符号将不可预知地随机变化,但总体上服从一定的统计规律。
随机误差决定了测量的精密度。
随机误差不能用简单的修正值法来修正,只能通过概率和数理统计的方法去估计它出现的可能性。
系统误差越小,测量结果准确度越高;随机误差越小,测量结果精密度越高。
如果一个测量数据的准确度和精密度都很高,就称此测量的精确度很高。
精密度:
要求所加工的零件的尺寸达到的准确程度,也就是容许误差的大小,容许误差大的精密度低,容许误差小的精密度高;简称“精度”
正确度:
是表示测量结果中系统误差大小的程度。
统计学上,正确度能成功估计一数量的正确值。
有时和精确度定义相同。
1.7等精度测量某电阻10次,得到的测量列如下:
R1=167.95ΩR2=167.45ΩR3=167.60Ω
R4=167.60ΩR5=167.87ΩR6=167.88Ω
R7=168.00ΩR8=167.850ΩR9=167.82Ω
R10=167.608Ω
试求10次测量的算术平均值。
解:
求10次测量的算术平均值
:
习题2
2.1试简述金属电阻应变片与半导体材料的电阻应变效的区别。
答:
都是基于压阻效应,也就是受到压力时其电阻值会发生变化,但半导体应变片的灵敏系数比金属应变片要大很多,用于大信号输出的场合,但是机械强度低,受温度影响大。
金属应变片机械强度高,灵敏度低,成本也低。
2.2采用阻值R=120Ω、灵敏度系数K=2.0的金属电阻应变片与阻值R=120Ω的固定电阻组成电桥,供桥电压为10V。
当应变片应变为1000时,若要使输出电压大于10mV,则可采用何种工作方式(设输出阻抗为无穷大)?
解:
由于不知是何种工作方式,可设为n,故可得:
mV
得n要小于2,故应采用全桥工作方式。
2.3试简述直流测量电桥和交流测量电桥的区别。
答:
直流电桥是得出的为静态点数据,交流电桥得出的为动态点数据,不过交流电桥得动态点数据为静态点数据的积分——范围在静态点数据线上波动而已。
2.4.试简述电位器式位移传感器的工作原理。
答:
电位器是人们常用到的一种电子元件,它作为传感器可以将机械位移或其他能转换为其有一定函数关系的电阻值的变化,从而引起输出电压的变化。
所以它是一个机电传感元件。
2.5采用阻值为120Ω灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V,并假定负载电阻无穷大。
当应变片上的应变分别为1和1000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。
解:
单臂时
,所以应变为1时
V,应变为1000时应为
V;双臂时
,所以应变为1时
V,应变为1000时应为
V;全桥时
,所以应变为1时
/V,应变为1000时应为
V。
从上面的计算可知:
单臂时灵敏度最低,双臂时为其两倍,全桥时最高,为单臂的四倍。
2.7试简述电阻应变片式测力传感器的工作原理。
答:
电阻应变式传感器是基于这样一个原理:
弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
2.10试简述电阻应变片实现温度补偿的方法。
答:
电阻应变片由于温度效应引起的误差为温度误差。
产生温度误差的原因有电阻丝的电阻率随温度发生变化;电阻丝和试件的线膨胀系数不同使其产生附加形变。
温度误差给测量结果的精确度产生很大的影响,在实际测量中要采取措施进行温度补偿:
自补偿法和线路补偿法。
2.11试简述压阻式压力、加速度传感器的工作原理。
答:
压阻式压力传感器中晶体是各向异性的,非晶体是各向同性的。
某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应。
压阻式加速度传感器,它采用硅悬臂梁结构。
在硅悬臂梁的自由端装有敏感质量块,在梁的根部,扩散四个性能一致的电阻,当悬臂梁自由端的质量块受到外界加速度作用时,将感受到的加速度转变为惯性力,使悬臂梁受到弯矩作用,产生应力。
这时硅梁上四个电阻条的阻值发生变化,使电桥产生不平衡,从而输出与外界的加速度成正比的电压值。
习题3
3.1试简述变气隙电感式压力传感器及差动式变气隙电感压力传感器的工作原理。
答:
变气隙电感式压力传感器的工作原理:
置于一金属膜片两侧的两个电感器件与膜片保持一定间隙,并与膜片组成两压力腔,当介质压力或压差进入两侧的压力腔体中,膜片将向一侧偏移(压力小的一侧),使膜片与两电感器件之间的间隙改变,一侧变小(压力小的一侧),另一侧变大,从而引起了电压的改变。
差动式变气隙电感压力传感器将被侧参数压力的变化转换为输出相应电流的变化。
通过接口电路可与微机配套,可对压力参数进行远距离测量和控制。
3.3试简要说明差动变压器式传感器产生零点残余电压的原因,并简述减小或消除零点残余电压的方法。
答:
当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。
但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。
零点残余电压的存在造成零点附近的不灵敏区;零点残余电压输入放大器内会使放大器末级趋向饱和,影响电路正常工作等。
消除零点残余电压方法:
(1)从设计和工艺上保证结构对称性;
(2)选用合适的测量线路;(3)采用补偿线路。
3.4试简述差动整流电路的工作原理。
答:
差动整流电路的工作原理:
当动铁芯移动时引起上下两个全波整流电路输出差动电压,中间可调整零位,输出电压与铁芯位移成正比,这种电路受二极管的非线性影响以及二极管正向饱和压降反向漏电流的不利影响很大。
3.5什么是涡流效应?
怎样利用电涡流式传感器进行位移测量?
答:
闭合铁芯(或一大块导体)处于交变磁场中,交变的磁通量使闭合铁芯(或一大块导体)中产生感应电流,形成涡电流。
假如铁芯(或导体)是纯铁(纯金属)的,则由于电阻很小,产生的涡电流很大,电流的热效应可以是铁(或金属)的温度达到很高的,甚至是铁(或金属)的熔点,使铁熔化。
通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。
输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。
3.6电涡流式传感器的常用测量电路有哪些?
简单叙述其原理。
答:
根据电涡流式传感器的基本原理,传感器线圈与被测金属导体间距离的变化可以转化为传感器线圈的阻抗或电感的变化。
测量电路则是把这些参数的变化转换为电压或电流输出,常用的测量电路有电桥电路和谐振电路。
(1)电桥电路。
在进行测量时,由于传感器线圈的阻抗发生变化,使电桥失去平衡,而电桥不平衡造成的输出信号被放大并检波,就可得到与被测量成正比的输出。
(2)谐振电路。
这种方法是把传感器线圈与电容并联组成LC并联谐振电路。
当传感器接近被测金属导体时,线圈电感发生变化,LC回路的阻抗和谐振频率将随着L的变化而变化,因此可以利用测量回路阻抗或谐振频率的方法间接反映出传感器的被测量。
3.7简单叙述自感式、差动变压器式和涡流式传感器的工作原理及特点。
答:
自感式传感器是把被测量的变化转换成自感L的变化,通过一定的转换电路转换成电压或电流输出。
差动变压器式传感器是根据变压器的基本原理制成的,并且一、二次线圈都用差动形式连接,一般将被测量的变化转换为变压器的互感变化,变压器一次线圈输入交流电压,二次线圈则互感应出电动势。
电涡流传感器是以电涡流效应为原理的非接触式位移、振动传感器。
可对进入测量范围内的金属物体的运动参数 进行精密的非接触测量。
3.8试比较自感式、差动变压器式和涡流式传感器有哪些共同点和不同点?
它们各自应用在哪些方面?
答:
按磁路几何参数变化形式的不同,自感式传感器可分为变气隙式、变截面积式和螺线管式三种。
主要应用于测量位移和尺寸,也可以测量能够转换为位移量的其它参数,如力、张力、压力、压差、应变、转矩、速度和加速度等。
差动变压器结构形式较多,有变隙式、变面积式和螺线管式。
应用最多的是螺线管式差动变压器式传感器。
主要用于位移和力矩的测量。
电涡流传感器是以电涡流效应为原理的非接触式位移、振动传感器。
可对进入测量范围内的金属物体的运动参数进行精密的非接触测量。
主要用于温度位移尺寸和厚度的测量。
习题4
4.1根据电容式传感器的工作原理,可将其分为几种类型?
每种类型各有什么特点?
各适用什么场合?
答:
电容式传感器是将被测量的变化转化为电容量变化。
主要应用于测量压力、力、位移、振动、液位等参数。
其具有结构简单,体积小,灵敏度高及价格低廉,还可非接触测量等一系列的优点。
随着集成电路的迅速发展,它的分布电容、非线性等缺点得到有效的克服。
故电容式传感器在实际的生产中得到了广泛的应用。
电容式压力传感器是将由被测压力引起的弹性元件的位移变化转变为电容的变化来实现测量的。
它用于测量流体或气体的压力。
电容式加速度传感器具有结构简单、分辨率高,能在高温、高压、强辐射及强磁场等恶劣的环境中工作,也能耐受极大冲击,适用范围极广。
动态反应时间短是电容式加速度传感器的一个显著优点,它能在几兆赫兹的频率下工作,因此特别适合于动态测量。
电容式湿度传感器是通过改变传感器中电介质的介电常数,从而引起电容量的变化来实现测量的。
电容式荷重传感器是利用弹性元件的变形,使电容随外加载荷的变化而变化
4.2如何改善单极式变极距电容传感器的非线性?
答:
采用差动式结构即可大大降低非线性误差。
4.4简述差动式电容测厚仪的工作原理。
答:
当测量端即活动端有位移时,一个电容值增大,另一个减小,通过电路让这两个变化值得绝对值相加输出即为测量值,其作用是增大了变化的量,便于测量微小变化。
4.7为什么说变间隙式电容传感器的特性是非线性的?
采取什么措施可改善其非线性特征?
答
设极板面积为A,其静态电容量为
,当活动极板移动x后,其电容量为
(1)
当x< 则 (2) 由式 (1)可以看出电容量C与x不是线性关系,只有当x< 同时还可以看出,要提高灵敏度,应减小起始间隙d过小时。 但当d过小时,又容易引起击穿,同时对加工精度的要求也提高了。 因此,一般是在极板间放置云母、塑料膜等介电常数高的物质来改善这种情况。 在实际应用中,为了提高灵敏度,减小非线性,可采用差动式结构。 习题5 5.1什么叫做压电效应? 什么叫做顺压电效应? 什么叫做逆压电效应? 答: 压电式传感器是利用某些电介质的压电效应原理制成的,它用来测量最终能变换为力的那些物理量,例如力、压力、加速度等。 压电式传感器具有体积小、重量轻、频带宽、灵敏度高等优点。 顺压电效应就是指当沿着一定方向对某些物质施力(拉力或压力)而使其变形时,在它的两个表面上会出现电荷的聚集,当外力去掉后,又重新恢复不带电状态的现象。 而逆压电效应则正好与其相反,在某些物质极化方向上施加电场,该物质将会产生形变,若撤去外加电场,该介质的形变随之消失,这种现象称为逆压电效应。 压电效应产生的电荷大小和极性与施加力大小和方向有关。 5.2石英晶体的横向和纵向压电效应的产生与外力有什么关系? 答: 当石英晶体沿x轴和y轴受到外力作用时,结构上将产生形变,正、负离子的相对位置也随之发生了改变,正、负电荷的中心已不再重合,电荷失去了平衡,所以晶体表面会产生电荷,对外显示电性。 当石英晶体沿z轴受到外力作用时,由于正、负离子对称平移,正、负电荷中心始终保持重合,电荷平衡,所以石英晶体不产生电荷。 这也是沿光轴z施加力,石英晶体不产生压电效应的原因。 5.3简述提高压电式传感器灵敏度的方法有哪些。 答: 压电式传感器的电荷灵敏度不仅与压电系数有关,还与晶片的个数有关。 故采用多个晶片的并联能够提高传感器的灵敏度。 在测量过程中,传感器灵敏度与标定的会有所降低。 为保证传感器灵敏度的稳定,应提高承载面的刚度,还应注意使用环境的温度,应使传感器在压电晶体特性稳定温度下工作,温度过高,要设计隔热装置。 5.4能用压电式传感器能测量静态或变化缓慢的信号吗? 为什么? 答: 压电式传感器不能测量静态或变化缓慢的信号,根据电压幅值比和相角与频率比的关系曲线可知(如下图),当作用在压电元件上的力是静态力(w=0)时,则前置放大器的输入电压等于零。 因为电荷就会通过放大器的输入电阻和传感器本身的泄漏电阻漏掉,从原理上决定了压电式传感器不能测量静态和缓慢变化的物理量。 5.5压电式传感器中采用电荷放大器有何优点? 为什么电压灵敏度与电缆长度有关? 而电荷灵敏度与电缆无关? 答: 压电式传感器中采用电荷放大器的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。 缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 电压灵敏度与电缆长度有关,电缆本身是有电阻的,要产生一定的压降的。 电流相对要好一点。 习题6 6.1什么是热电效应,常见的都什么材料具有热电效应? 答: 电流通过导体时,会因为导体电阻而损耗掉部分能量,这部分能量转换为热能,就形成了电的热效应。 金属材料都具有热电效应。 6.2简单叙述热电偶的工作原理。 答: 热电偶是利用热电效应的原理制成的。 热电效应就是把两种不同的导体或半导体(A和B)串接成一个闭合回路,如果两导体接点处温度( 和 )不同,则两点之间便产生电动势,从而在回路中便形成了电流的现象。 6.3热电偶的热电动势都与哪些量有关? 答: 热电偶两端的热电动势是由两种导体的接触电动势和单一导体的温差电动势所组成。 接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势,其大小取决于两种不同导体的材料特性和接触点的温度。 6.4利用镍铬-康铜热电偶测量某热源的温度,仪表显示E(T,0)=32.96mV, 问该热源的温度是多少? 答: 根据下表: 镍铬-康铜热电偶分度表,可知,当仪表显示E(T,0)=32.96mV时,表示冷端为0℃时显示的电压是32.96mV,此时热端为450℃。 6.5热电偶具有热电动势的条件有哪些? 答: (1)必须用两种不同的金属材料才能组成热电偶; (2)热电偶两端必须有温差才会产生热电势。 6.6在已知镍铬-康铜和铜-康铜热电偶分度表的情况下,怎样求得镍铬-铜热电偶的E(100℃,0℃)? 答: 根据热电偶的标准电极定律: 如果已知热电偶的两个电极A、B分别与另一电极C组成的热电偶的热电势为EAC(T,T0)和EBC(T,T0),则在相同接点温度(T,T0)下,由A、B电极组成的热电偶的热电势EAB(T,T0)为: 这一规律称为标准电极定律,电极C称为标准电极。 在工程测量中,由于纯铂丝的物理化学性能稳定,熔点较高,易提纯,所以目前常将纯铂丝作为标准电极。 标准电极定律使得热电偶电极的选配提供了方便。 例如,铂铑30—铂热电偶的EAC(1084.5,0)=13,976mv,铂铑6—铂热电偶的EBC(1084.5,0)=8.354mv,根据标准电极定律,铂铑30—铂铑6热电偶的EAB(1084.5,0)=13,976-8.354=5.613mv。 6.7用铜-康铜热电偶测某一温度T,参考端在室温环境 中,测得热电动势EAB(T, )=1.961mV,又用室温计测出 =25℃,求温度T为多少? 答: 根据中间温度定律 ,可知 则根据铜-康铜热电偶分度表 则查表得到T=71℃。 6.8国际标准的热电偶有哪些? 答: 国际标准的热电偶有八种,分别是 、 、 、 、 、 、 和镍铬硅-镍硅热电偶。 6.9常用的热电偶有哪些类型? 各有什么特点? 答: 常用热电偶按其结构又可分为普通型热电偶和铠装热电偶。 热电偶在使用过程中需要进行温度补偿,常用的补偿方法有补偿导线法、冷端恒温法及温度修正法和电桥补偿法等。 热电偶常用来测量温度。 常用的热电偶温度传感器有WR系列的。 6.10温度补偿指的是什么,热电偶传感器为什么要进行温度补偿? 答: 所谓的温度补偿就是让温度传感器的自由端的参考温度能做到更加的适当。 大所数的温度传感器都需要温度补偿,常用的温度补偿方法有电桥补偿法。 6.11热电偶温度补偿方法有哪些? 并分别简单叙述其原理? 答: 在实际测量中,通过热电偶所测得的热电势为 ,其中 一般都不为零。 若想通过查分度表得到所测对象温度,这就要求对冷端温度进行处理,使其满足需要,这种做法称之为热电偶传感器的温度补偿。 常用的补偿方法有补偿导线法、冷端恒温法及温度修正法和电桥补偿法等。 6.12试说明WRE130型号的含义及该温度传感器的适用场合? 答: 热电阻型号含义: WRE130为化工专用热电偶,它采用防水式接线盒,适合石油化工的环境要求;固定螺纹的标准符合JB/T5219-91和JB/5583-91热电偶、热电阻的规定;固定法兰处符合上述标准的同时,增加三种不同焊接方法,不同形式密封面的固定法兰安装盘,供选择和满足不同用户的需要。 6.13在工程中对制造热电阻的材料有什么要求? 答: 在工程中,对用于制造热电阻的材料是有要求的,要求该材料的电阻温度系数和电阻率较大、电阻与温度有较好的线性关系且物理化学性能稳定等。 目前最常用的热电阻有铂热电阻和铜热电阻。 6.14热电阻测量时采用何种测量电路? 为什么要采用这种测量电路? 说明这种电路的工作原理。 答: 用热电阻传感器进行测温时,测量电路经常采用电桥电路。 热电阻与检测仪表相隔一段距离,因此热电阻的引线对测量结果有较大的影响。 热电阻内部引线方式有二线制、三线制和四线制三种。 其中两线制适于引线不长、测温精度要求较低的场合。 6.16在实际的生活生产中WZ系列热电阻都应用在哪些方面? 答: 广泛应用于电力、化工、造纸、环保、水处理、建筑、纺织、冶金、制药、食品等行业,规格型号齐全。 包括WZ系列装配式热电阻;WZK系列铠装式热电阻;WZ系列电站测温用热电阻;WZ系列隔爆型热电阻;WZ系列耐腐型、耐磨型热电阻等 工业热电阻通常和显示仪表,记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中的从-200~420℃范围内的液体蒸汽和气体介质及固体表面的温度。 6.17热电阻是怎样实现测温度和测流量的? 答: 热电阻用来测温,必须要配合显示器才能直观地读出所测温度。 热电阻一般是由两种金属丝制成,像铂铑合金等,这种金属有一个特性,就是随温度变化,会产生不同的电动势,当然电势差极小,我们就是利用这一特性,实测的实际是电势差,也就是电压,然后经过数字转化,以不同的电压值来表示温度值。 或者配合动圈表来进行温度控制。 热电阻测流量利用被加热物体的冷却率来求流速的流量仪表。 习题7 7.1什么是内光电效应? 基于内光电效应工作的器件有哪些? 答: 光电效应是指在光的照射下一些金属、金属氧化物或半导体材料释放电子的现象。 光电效应是光电传感器的理论基础。 内光电效应器件是指利用物质在光的照射下,电导性能改变或产生电动势的器件,常见的内光电效应器件有光敏电阻、光敏晶体管和光电池等。 7.3试比较光敏电阻、光敏二极管和光敏三极管的性能差异,并简要分析什么情况下应选用这些器件。 答: 主要的区别是,光敏电阻随着光线的强弱,电阻值变化;光敏三极管是利用外照光线的变化,来实现控制电路的通或断;二极管就是正向导电,反向不导电。 7.5试比较热探测器与光子探测器的区别。 答: 光子探测器的工作机理是光子效应。 相关内容如前文所述。 光子探测器可直接把红外光能转换成电能,其灵敏度高、响应速度快,但因其红外波长响应范围窄,有的还需在低温条件下才能使用。 用光子探测器组成的红外传感器已广泛应用在遥测、遥感、成像、测温等方面。 7.6什么是光纤的传光原理? 数值孔径是什么? 答: 光纤传感器是将光源发出的光经过光纤再送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质如光的强度、波长、频率、相位、偏振态等发生变化,成为被调制的信号光。 已调制的信号光再经光纤送入光探测器,经解调器解调后,最终获得被测量的参数。 习题8 8.1简述霍尔效应的原理,并说明其应用。 答: 霍尔效应是半导体中的自由电荷受到磁场中的洛仑兹力作用而产生的。 基于霍尔效应原理工作的半导体器件称为霍尔元件。 主要应用为霍尔式位移传感器、霍尔式压力传感器、汽车霍尔点火器。 8.2一个霍尔元件在一定的电流控制下,其霍尔电势与哪些因素有关? 答: 霍尔电势除了与材料的载流子迁移率和电阻率有关外,同时还与霍尔元件的几何尺寸有关。 一般要求霍尔元件的灵敏度越大越好。 霍尔元件的厚度d与 成反比。 因此,霍尔元件的厚度越小,它的灵敏度就越高,但厚度太小,会使元件的输入、输出电阻增加。 8.3为什
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器 技术 应用 课后 习题 答案