XX年七年级数学上册全册教案人教版.docx
- 文档编号:6658343
- 上传时间:2023-01-08
- 格式:DOCX
- 页数:15
- 大小:29.75KB
XX年七年级数学上册全册教案人教版.docx
《XX年七年级数学上册全册教案人教版.docx》由会员分享,可在线阅读,更多相关《XX年七年级数学上册全册教案人教版.docx(15页珍藏版)》请在冰豆网上搜索。
XX年七年级数学上册全册教案人教版
XX年七年级数学上册全册教案(人教版)
本资料为woRD文档,请点击下载地址下载全文下载地址 教 案
第一章 有理数
.1 正数和负数
第1课时 正数和负数
教学目标:
.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:
会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:
负数的引入.
教与学互动设计:
创设情境,导入新课
展示 珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
合作交流,解读探究
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?
你能再举一些日常生活中具有相反意义的量吗?
该如何表示它们呢?
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”号来表示.
活动 每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论 什么样的数是负数?
什么样的数是正数?
0是正数还是负数?
自己列举正数、负数.
总结 正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
应用迁移,巩固提高
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?
【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:
15记为-1,10:
45记为1等等.依此类推,上午7:
45应记为
A.3 B.-3 c.-2.5 D.-7.45
【点拨】读懂题意是解决本题的关键.7:
45与10:
00相差135分钟.
总结反思,拓展升华
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.
.下表是小张同学一周中简记储蓄罐中钱的进出情况表:
星期
日
一
二
三
四
五
六
+16
+5.0
-1.2
-2.1
-0.9
+10
-2.6
本周小张一共用掉了多少钱?
存进了多少钱?
储蓄罐中的钱与原来相比是多了还是少了?
如果不用正、负数的方法记账,你还可以怎样记账?
比较各种记账的优劣.
2.数学游戏:
4个同学站或蹲成一排,从左到右每个人编上号:
1,2,3,4.用“+”表示“站”,“-”表示“蹲”.
由一个同学大声喊:
+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:
-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;
增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复中的游戏.
课堂跟踪反馈
夯实基础
.填空题:
如果节约用水30吨记为+30吨,那么浪费20吨记为 吨.
如果4年后记作+4年,那么8年前记作 年.
如果运出货物7吨记作-7吨,那么+100吨表示 .
一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了 .
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.
用正数或负数记录下午1时和下午5时的水位;
下午5时的水位比中午12时水位高多少?
提升能力
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:
52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
课时小结
.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?
第2课时 正数和负数的应用
教学目标:
.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量;
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
教学重点:
深化对正负数概念的理解.
教学难点:
正确理解和表示向指定方向变化的量.
教与学互动设计:
知识回顾和理解
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
[问题1]:
“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:
用正数、负数和零表示零上温度、零下温度和零度.
思考 “0”在实际问题中有什么意义?
归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.
如:
水位不升不降时的水位变化,记作:
0m.
[问题2]:
引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?
分别是什么?
深化理解,解决问题
[问题3]:
【例1】一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
【例2】某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:
在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
巩固练习
.通过例题提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积的变化情况是:
中国减少866,印度增长72,
韩国减少130,新西兰增长434,
泰国减少3247,孟加拉减少88.
用正数和负数表示这六国1990~1995年平均森林面积的增长量;
如何表示森林面积减少量,所得结果与增长量有什么关系?
哪个国家森林面积减少最多?
通过对这些数据的分析,你想到了什么?
阅读与思考
用正数和负数表示加工允许误差.
问题:
1.直径为30.032mm和直径为29.97mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?
请举例.
应用迁移,巩固提高
.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是 .
2.一种零件的内径尺寸在图纸上是9±0.05,表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?
最小不小于标准尺寸多少?
3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量的增减值如下表:
星期
一
二
三
四
增减
-5
+7
-3
+4
根据上面的记录,问:
哪几天生产的摩托车比计划量多?
星期几生产的摩托车最多,是多少辆?
星期几生产的摩托车最少,是多少辆?
类比例题,要求学生注意书写格式,体会正负数的应用.
课时小结
.2 有理数
第1课时 有理数
教学目标:
.理解有理数的意义.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
教学重点:
会把所给的各数填入它所在的数集图里.
教学难点:
掌握有理数的两种分类.
教与学互动设计:
创设情境,导入新课
讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
合作交流,解读探究
3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…
议一议 你能说说这些数的特点吗?
学生回答,并相互补充:
有小学学过的正整数、0、分数,也有负整数、负分数.
说明 我们把所有的这些数统称为有理数.
试一试 你能对以上各种类型的数作出一张分类表吗?
有理数
做一做 以上按整数和分数来分,那可不可以按性质来分呢,试一试.
有理数
数的集合
把所有正数组成的集合,叫做正数集合.
试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
应用迁移,巩固提高
【例1】
把下列各数填入相应的集合内:
,3.1416,0,XX,-,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?
为什么?
有理数 有理数
总结反思,拓展升华
提问:
今天你获得了哪些知识?
由学生自己小结,然后教师总结:
今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
课堂跟踪反馈
夯实基础
.把下列各数填入相应的大括号内:
-7,0.125,,-3,3,0,50%,-0.3
整数集合{};
分数集合{};
负分数集合{};
非负数集合{};
有理数集合{}.
2.下列说法中正确的是
A.整数就是自然数
B.0不是自然数
c.正数和负数统称为有理数
D.0是整数,而不是正数
提升能力
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
第2课时 数轴
教学目标:
.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
教学重点:
数轴的概念.
教学难点:
从直观认识到理性认识,从而建立数轴概念.
教与学互动设计:
创设情境,导入新课
展示 课本P7的“问题”
合作交流,解读探究
师:
对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】引导学生学会画数轴.
第一步:
画直线,定原点.
第二步:
规定从原点向右的方向为正.
第三步:
选择适当的长度为单位长度.
第四步:
拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?
有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?
与原点相距多少个单位长度?
表示-a的点在原点的什么位置上?
与原点又相距多少个单位长度?
小结 整数在数轴上都能找到点表示吗?
分数呢?
可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.
应用迁移,巩固提高
【例1】
下列所画数轴对不对?
如果不对,指出错在哪里?
【例2】试一试:
用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有
A.1个 B.2个 c.3个 D.4个
【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为XXcm的线段AB,则线段AB盖住的整点有
A.1998个或1999个
B.1999个或XX个
c.XX个或XX个
D.XX个或XX个
总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
课堂跟踪反馈
夯实基础
.规定了 、 、 的直线叫做数轴,所有的有理数都可从用 上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是
A.7
B.-3
c.7或-3
D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是
A.正数
B.负数
c.不是负数
D.不是正数
5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.
9.下列四个数中,在-2到0之间的数是
A.-1
B.1
c.-3
D.3
第3课时 相反数
教学目标:
.借助数轴了解相反数的概念,知道互为相反数的位置关系.
2.给一个数,能求出它的相反数.
教学重点:
理解相反数的意义.
教学难点:
理解和掌握双重符号简化的规律.
教与学互动设计:
创设情境,导入新课
活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.
交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?
合作交流,解读探究
.观察下列数:
6和-6,2和-2,7和-7,和-,并把它们在数轴上标出.
想一想 上述各对数有什么特点?
表示这四对数的点在数轴上有什么特点?
你能够写出具有上述特点的n组数吗?
观察 像这样只有符号不同的两个数叫相反数.
互为相反数的两个数在数轴上的对应点是在原点两旁,并且与原点距离相等的两个点.即:
我们把a的相反数记为-a,并且规定0的相反数就是零.
总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.
2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-=-5,表示+5的相反数为-5;-=5,表示-5的相反数是5;-0=0,表示0的相反数是0.
应用迁移,巩固提高
【例1】填空
-5.8是 的相反数, 的相反数是-,a的相反数是 ;a-b的相反数是 ,0的相反数是 .
正数的相反数是 ,负数的相反数是 , 的相反数是它本身.
【例2】下列判断不正确的有
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.
A.1个 B.2个 c.3个 D.4个
【例3】
化简下列各符号:
-[-]; +{-[-]};
-{-{-…-}…}.
【归纳】
化简的规律是:
有偶数个负号,结果为正;有奇数个负号,结果为负.
【例4】
数轴上A点表示+4,B、c两点所表示的数是互为相反数,且c到A的距离为2,则点B和点c各对应什么数?
总结反思,拓展升华
【归纳】 相反数的概念及表示方法.
相反数的代数意义和几何意义.
符号的化简.
课堂跟踪反馈
夯实基础
.判断题
-3是相反数.
-7和7是相反数.
-a的相反数是a,它们互为相反数.
符号不同的两个数互为相反数.
2.分别写出下列各数的相反数,并把它们在数轴上表示出来.
,-2,0,4.5,-2.5,3
3.若一个数的相反数不是正数,则这个数一定是
A.正数
B.正数或0
c.负数
D.负数或0
4.一个数比它的相反数小,这个数是
A.正数
B.负数
c.非负数
D.非正数
5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 .
提升能力
6.若a与a-2互为相反数,则a的相反数是 .
7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.
第4课时 绝对值
教学目标:
.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.
2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.
教学重点:
给出一个数,会求它的绝对值.
教学难点:
理解绝对值的几何意义、代数定义的导出.
教与学互动设计:
创设情境,导入新课
活动 请两位同学到讲台前,分别向左、向右行3米.
交流 ①他们所走的路线相同吗?
②若向右为正,可分别怎样表示他们的位置?
③他们所走的路程的远近是多少?
合作交流,解读探究
观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为 ,它们的 不同, 相同.
总结 数轴上表示6和-6的两个点虽然在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.
绝对值:
在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.
想一想 -3的绝对值是什么?
+2的绝对值是多少?
-12的绝对值呢?
a的绝对值呢?
交流 同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.
思考 求8,-8,3,-3,,-的绝对值.由此,你想到什么规律?
总结 互为相反数的两个数的绝对值相同.
思考 说出下列各组数的绝对值:
+2.3,9,+3;-1.6,-7,30%;0.
总结归纳:
正数的绝对值是它本身.用式子表示是:
a>0,则|a|=a.
负数的绝对值是它的相反数.用式子表示是:
a<0,则|a|=-a.
零的绝对值是零.用式子表示是:
a=0,则|a|=0.
a为任意有理数,a的绝对值总是正数或零,用式子表示是:
|a|≥0.
应用迁移,巩固提高
例题填空:
绝对值等于4的数有 个,它们是 ;
绝对值等于-3的数有 个;
绝对值等于它本身的数有 个,它们是 ;
①若│a│=2,则a= ,
②若│-a│=3,则a= ;
绝对值不大于2的整数是 .
总结反思,拓展升华
本节课中,我们认识了绝对值,要注意掌握以下两点:
①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断这个数是正数还是负数.
课堂跟踪反馈
夯实基础
.填空题.
-│-3│= ,+│-0.27│= ,-│+26│= ,-│+24│= .
若│x│=2,则x= ;若│-x│=2,则x= .
2.选择题.
若│a│≥0,那么
A.a>0 B.a<0
c.a≠0
D.a为任意数
若│a│=│b│,则a、b的关系是
A.a=b
B.a=-b
c.a+b=0或a-b=0
D.a=0且b=0
下列说法正确的是
A.两个数的绝对值相等,这两个数也相等
B.两个数不相等,这两个数的绝对值也不相等
c.一个数等于另一个数的绝对值,这两个数相等或互为相反数
D.绝对值是同一个正数的有理数有两个,这两个数互为相反数
提升能力
3.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.
4.抽查8个零件,内直径超过标准毫米数的记作正数,不足标准毫米数的记作负数.这种零件的标准内直径是30mm,且30±0.5mm为优等品,8个零件的内直径记录如下:
序号
2
3
4
5
6
7
8
内直径
+0.3
-0.6
-0.45
+0.2
-0.15
+0.52
+0.7
-0.56
序号为几的零件最接近标准?
哪几个零件为优等品?
第5课时 比较有理数的大小
教学目标:
会利用绝对值比较两个有理数的大小.
教学重难点:
利用绝对值比较两个负数的大小.
教与学互动设计:
创设情境,导入新课
投影 你能比较下列各组数的大小吗?
│-3│与│-8│;4与-5;0与3;
-7和0;0.9和1.2.
合作交流,解读探究
讨论交流 由以上各组数的大小比较可见:
正数都大于0,0都大于负数,正数都大于负数.
思考 若任取两个负数,该如何比较它们的大小呢?
总结 两个负数,绝对值大的反而小,或者说,两个负数,绝对值小的反而大.
注意 比较两个负数的大小又多了一种方法,即两个负数,绝对值大的反而小;
异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要先比较它们的绝对值;
在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:
左边的数总比右边的数要小.即利用数轴来比较有理数的大小.
应用迁移,巩固提高
【例1】比较下列各组数的大小:
-和-2.7; -和-.
【例2】自己任写三个数,使它大于-而小于-.
【例3】
已知│a│=4,│b│=3,且a>b,求a、b的值.
总结反思,拓展升华
通过本节课所学的有理数的大小比较,你能掌握以下两种方法吗?
利用数轴,在数轴上把这些数表示出来,然后根据“数轴上左边的数总比右边的数小”来比较.
利用比较法则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- XX 七年 级数 上册 教案 人教版