汇总小学阶段奥数知识点.docx
- 文档编号:6640842
- 上传时间:2023-01-08
- 格式:DOCX
- 页数:31
- 大小:82.69KB
汇总小学阶段奥数知识点.docx
《汇总小学阶段奥数知识点.docx》由会员分享,可在线阅读,更多相关《汇总小学阶段奥数知识点.docx(31页珍藏版)》请在冰豆网上搜索。
汇总小学阶段奥数知识点
2011年小学奥数(知识点梳理)
前言
小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述
一、计算
1.四则混合运算繁分数
1运算顺序
2分数、小数混合运算技巧
一般而言:
1加减运算中,能化成有限小数的统一以小数形式;
2乘除运算中,统一以分数形式。
⑶带分数与假分数的互化
⑷繁分数的化简
2.简便计算
⑴凑整思想
⑵基准数思想
⑶裂项与拆分
⑷提取公因数
⑸商不变性质
⑹改变运算顺序
1运算定律的综合运用
2连减的性质
3连除的性质
4同级运算移项的性质
5增减括号的性质
6变式提取公因数
形如:
3.估算
求某式的整数部分:
扩缩法
4.比较大小
1通分
a.通分母
b.通分子
2跟“中介”比
3利用倒数性质
若
,则c>b>a.。
形如:
,则
。
5.定义新运算
6.特殊数列求和
运用相关公式:
①
②
③
④
⑤
⑥
⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、数论
1.奇偶性问题
奇
奇=偶奇×奇=奇
奇
偶=奇奇×偶=偶
偶
偶=偶偶×偶=偶
2.位值原则
形如:
=100a+10b+c
3.数的整除特征:
整除数
特征
2
末尾是0、2、4、6、8
3
各数位上数字的和是3的倍数
5
末尾是0或5
9
各数位上数字的和是9的倍数
11
奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25
末两位数是4(或25)的倍数
8和125
末三位数是8(或125)的倍数
7、11、13
末三位数与前几位数的差是7(或11或13)的倍数
4.整除性质
1如果c|a、c|b,那么c|(a
b)。
2如果bc|a,那么b|a,c|a。
3如果b|a,c|a,且(b,c)=1,那么bc|a。
4如果c|b,b|a,那么c|a.
5a个连续自然数中必恰有一个数能被a整除。
5.带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。
用带余数除式又可以表示为a÷b=q……r,0≤r<ba=b×q+r
6.唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n=p1
×p2
×...×pk
7.约数个数与约数和定理
设自然数n的质因子分解式如n=p1
×p2
×...×pk
那么:
n的约数个数:
d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:
(1+P1+P1
+…p1
)(1+P2+P2
+…p2
)…(1+Pk+Pk
+…pk
)
8.同余定理
①同余定义:
若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(modm)
②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
9.完全平方数性质
①平方差:
A
-B
=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。
②约数:
约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分解:
把数字分解,使他满足积是平方数。
④平方和。
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计
三、几何图形
1.平面图形
⑴多边形的内角和
N边形的内角和=(N-2)×180°
⑵等积变形(位移、割补)
1三角形内等底等高的三角形
2平行线内等底等高的三角形
3公共部分的传递性
4极值原理(变与不变)
⑶三角形面积与底的正比关系
S1︰S2=a︰b;S1︰S2=S4︰S3或者S1×S3=S2×S4
⑷相似三角形性质(份数、比例)
①
;S1︰S2=a2︰A2
②S1︰S3︰S2︰S4=a2︰b2︰ab︰ab;S=(a+b)2
⑸燕尾定理
S△ABG:
S△AGC=S△BGE:
S△GEC=BE:
EC;
S△BGA:
S△BGC=S△AGF:
S△GFC=AF:
FC;
S△AGC:
S△BCG=S△ADG:
S△DGB=AD:
DB;
⑹差不变原理
知5-2=3,则圆点比方点多3。
⑺隐含条件的等价代换
例如弦图中长短边长的关系。
⑻组合图形的思考方法
1化整为零
2先补后去
3正反结合
2.立体图形
⑴规则立体图形的表面积和体积公式
⑵不规则立体图形的表面积
整体观照法
⑶体积的等积变形
①水中浸放物体:
V升水=V物
②测啤酒瓶容积:
V=V空气+V水
⑷三视图与展开图
最短线路与展开图形状问题
⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系。
四、典型应用题
1.植树问题
①开放型与封闭型
②间隔与株数的关系
2.方阵问题
外层边长数-2=内层边长数
(外层边长数-1)×4=外周长数
外层边长数2-中空边长数2=实面积数
3.列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间
③车长甲+车长乙=速度差×追及时间
列车与人或骑车人或另一列车上的司机的相遇及追及问题
车长=速度和×相遇时间
车长=速度差×追及时间
4.年龄问题
差不变原理
5.鸡兔同笼
假设法的解题思想
6.牛吃草问题
原有草量=(牛吃速度-草长速度)×时间
7.平均数问题
8.盈亏问题
分析差量关系
9.和差问题
10.和倍问题
11.差倍问题
12.逆推问题
还原法,从结果入手
13.代换问题
列表消元法
等价条件代换
五、行程问题
1.相遇问题
路程和=速度和×相遇时间
2.追及问题
路程差=速度差×追及时间
3.流水行船
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4.多次相遇
线型路程:
甲乙共行全程数=相遇次数×2-1
环型路程:
甲乙共行全程数=相遇次数
其中甲共行路程=单在单个全程所行路程×共行全程数
5.环形跑道
6.行程问题中正反比例关系的应用
路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7.钟面上的追及问题。
1时针和分针成直线;
2时针和分针成直角。
8.结合分数、工程、和差问题的一些类型。
9.行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、计数问题
1.加法原理:
分类枚举
2.乘法原理:
排列组合
3.容斥原理:
1总数量=A+B+C-(AB+AC+BC)+ABC
2常用:
总数量=A+B-AB
4.抽屉原理:
至多至少问题
5.握手问题
在图形计数中应用广泛
1角、线段、三角形,
2长方形、梯形、平行四边形
3正方形
七、分数问题
1.量率对应
2.以不变量为“1”
3.利润问题
4.浓度问题
倒三角原理
例:
5.工程问题
①合作问题
2水池进出水问题
6.按比例分配
八、方程解题
1.等量关系
1相关联量的表示法
例:
甲+乙=100甲÷乙=3
x100-x3xx
②解方程技巧
恒等变形
2.二元一次方程组的求解
代入法、消元法
3.不定方程的分析求解
以系数大者为试值角度
4.不等方程的分析求解
九、找规律
⑴周期性问题
1年月日、星期几问题
2余数的应用
⑵数列问题
1等差数列
通项公式an=a1+(n-1)d
求项数:
n=
求和:
S=
2等比数列
求和:
S=
3裴波那契数列
⑶策略问题
1抢报30
2放硬币
⑷最值问题
1最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
2最优化问题
a.统筹方法
b.烙饼问题
一十、算式谜
1.填充型
2.替代型
3.填运算符号
4.横式变竖式
5.结合数论知识点
一十一、数阵问题
1.相等和值问题
2.数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3.幻方
⑴奇阶幻方问题:
杨辉法罗伯法
⑵偶阶幻方问题:
双偶阶:
对称交换法
单偶阶:
同心方阵法
一十二、二进制
1.二进制计数法
1二进制位值原则
2二进制数与十进制数的互相转化
3二进制的运算
2.其它进制(十六进制)
一十三、一笔画
1.一笔画定理:
⑴一笔画图形中只能有0个或两个奇点;
⑵两个奇点进必须从一个奇点进,另一个奇点出;
2.哈密尔顿圈与哈密尔顿链
3.多笔画定理
笔画数=
一十四、逻辑推理
1.等价条件的转换
2.列表法
3.对阵图
竞赛问题,涉及体育比赛常识
一十五、火柴棒问题
1.移动火柴棒改变图形个数
2.移动火柴棒改变算式,使之成立
一十六、智力问题
1.突破思维定势
2.某些特殊情境问题
一十七、解题方法
(结合杂题的处理)
1.代换法
2.消元法
3.倒推法
4.假设法
5.反证法
6.极值法
7.设数法
8.整体法
9.画图法
10.列表法
11.排除法
12.染色法
13.构造法
14.配对法
15.列方程
⑴方程
⑵不定方程
⑶不等方程
另外补充说明:
在华校课本六年级中有“棋盘上的数学”三讲,其实是找规律类型,知识点涉及棋盘格,几何,数论等,属于综合性问题。
汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。
有工程问题、行程问题、质数合数问题等等。
1.、小升初奥数知识点(年龄问题的三大特征)
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
和差倍问题:
和差问题
和倍问题
差倍问题
已知条件
几个数的和与差
几个数的和与倍数
几个数的差与倍数
公式适用范围
已知两个数的和,差,倍数关系
公式
①(和-差)÷2=较小数
较小数+差=较大数
和-较小数=较大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
和÷(倍数+1)=小数小数×倍数=大数
和-小数=大数
差÷(倍数-1)=小数
小数×倍数=大数
小数+差=大数
关键问题
求出同一条件下的
和与差
和与倍数
差与倍数
和差倍问题
和差问题和倍问题差倍问题
已知条件几个数的和与差几个数的和与倍数几个数的差与倍数
公式适用范围已知两个数的和,差,倍数关系
公式①(和-差)÷2=较小数
较小数+差=较大数
和-较小数=较大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
和÷(倍数+1)=小数
小数×倍数=大数
和-小数=大数
差÷(倍数-1)=小数
小数×倍数=大数
小数+差=大数
关键问题求出同一条件下的
和与差和与倍数差与倍数
2、小升初奥数知识点(植树问题总结):
基本类型:
在直线或者不封闭的曲线上植树,两端都植树
在直线或者不封闭的曲线上植树,两端都不植树
在直线或者不封闭的曲线上植树,只有一端植树
基本公式棵数=段数+1
棵距×段数=总长棵数=段数-1
棵距×段数=总长棵数=段数
棵距×段数=总长
关键问题确定所属类型,从而确定棵数与段数的关系
3、鸡兔同笼问题
基本概念:
鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:
兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:
找出总量的差与单位量的差。
4、奥数知识点(盈亏问题)
盈亏问题
基本概念:
一定量的对象,按照某种标准分组,产生一种结果:
按照另一种标准分组,又产生一种结果,由于
分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
基本思路:
先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:
总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:
总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:
总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:
对象总量和总的组数是不变的。
关键问题:
确定对象总量和总的组数。
5、小升初奥数知识点(牛吃草问题)
牛吃草问题
基本思路:
假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:
原草量和新草生长速度是不变的;
关键问题:
确定两个不变的量。
基本公式:
1)生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
2)总草量=较长时间×长时间牛头数-较长时间×生长量;
3)吃的天数=原有草量÷(牛头数-草的生长速度);
4)牛头数=原有草量÷吃的天数+草的生长速度。
6、小升初奥数知识点(平均数问题)
平均数
基本公式:
①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
2出总数量以及总份数,利用基本公式①进行计算.
②基准数法:
根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②
7、小升初奥数知识点(周期循环数)
周期循环与数表规律
周期现象:
事物在运动变化的过程中,某些特征有规律循环出现。
周期:
我们把连续两次出现所经过的时间叫周期。
关键问题:
确定循环周期。
闰年:
一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
平年:
一年有365天。
1年份不能被4整除;②如果年份能被100整除,但不能被400整除;
8、小升初奥数知识点(抽屉原理)
抽屉原理
抽屉原则一:
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:
把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:
总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:
如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m]+1个物体:
当n不能被m整除时。
②k=n/m个物体:
当n能被m整除时。
理解知识点:
[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:
构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
9、奥数知识点(定义新运算)
基本概念:
定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:
严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:
正确理解定义的运算符号的意义。
注意事项:
①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
小升初奥数知识点(数列求和)
数列求和
等差数列:
在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:
首项:
等差数列的第一个数,一般用a1表示;
项数:
等差数列的所有数的个数,一般用n表示;
公差:
数列中任意相邻两个数的差,一般用d表示;
通项:
表示数列中每一个数的公式,一般用an表示;
数列的和:
这一数列全部数字的和,一般用Sn表示.
基本思路:
等差数列中涉及五个量:
a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:
通项公式:
an=a1+(n-1)d;
通项=首项+(项数一1)×公差;
数列和公式:
sn,=(a1+an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:
n=(an-a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:
d=(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
关键问题:
确定已知量和未知量,确定使用的公式
10、加法乘法原理和几何计数
加法原理:
如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:
m1+m2.......+mn种不同的方法。
关键问题:
确定工作的分类方法。
基本特征:
每一种方法都可完成任务。
乘法原理:
如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:
m1×m2.......×mn种不同的方法。
关键问题:
确定工作的完成步骤。
基本特征:
每一步只能完成任务的一部分。
直线:
一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:
没有端点,没有长度。
线段:
直线上任意两点间的距离。
这两点叫端点。
线段特点:
有两个端点,有长度。
射线:
把直线的一端无限延长。
射线特点:
只有一个端点;没有长度。
①数线段规律:
总数=1+2+3+…+(点数一1);
②数角规律=1+2+3+…+(射线数一1);
③数长方形规律:
个数=长的线段数×宽的线段数:
④数长方形规律:
个数=1×1+2×2+3×3+…+行数×列数
11、小升初奥数知识点(质数与合数)
质数:
一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:
一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:
如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:
把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:
N=,其中a1、a2、a3……an都是合数N的质因数,且a1 求约数个数的公式: P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1) 互质数: 如果两个数的最大公约数是1,这两个数叫做互质数。 12、小升初奥数知识点(约数与倍数) 约数和倍数: 若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。 公约数: 几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。 最大公约数的性质: 1、几个数都除以它们的最大公约数,所得的几个商是互质数。 2、几个数的最大公约数都是这几个数的约数。 3、几个数的公约数,都是这几个数的最大公约数的约数。 4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。 例如: 12的约数有1、2、3、4、6、12; 18的约数有: 1、2、3、6、9、18; 那么12和18的公约数有: 1、2、3、6; 那么12和18最大的公约数是: 6,记作(12,18)=6; 求最大公约数基本方法: 1、分解质因数法: 先分解质因数,然后把相同的因数连乘起来。 2、短除法: 先找公有的约数,然后相乘。 3、辗转相除法: 每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。 公倍数: 几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。 12的倍数有: 12、24、36、48……; 18的倍数有: 18、36、54、72……; 那么12和18的公倍数有: 36、72、108……; 那么12和18最小的公倍数是36,记作[12,18]=36; 最小公倍数的性质: 1、两个数的任意公倍数都是它们最小公倍数的倍数。 2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。 求最小公倍数基本方法: 1、短除法求最小公倍数;2、分解质因数的方法 13、小升初奥数知识点(数的整除) 一、基本概念和符号: 1、整除: 如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。 2、常用符号: 整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”; 二、整除判断方法: 1.能被2、5整除: 末位上的数字能被2、5整除。 2.能被4、25整除: 末两位的数字所组成的数能被4、25整除。 3.能被8、125整除: 末三位的数字所组成的数能被8、125整除。 4.能被3、9整除: 各个数位上数字的和能被3、9整除。 5.能被7整除: ①末三位上数字所组成的数与末三位以前的数字所组
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汇总 小学 阶段 知识点