工程设计说明书.docx
- 文档编号:6548201
- 上传时间:2023-01-07
- 格式:DOCX
- 页数:29
- 大小:84.53KB
工程设计说明书.docx
《工程设计说明书.docx》由会员分享,可在线阅读,更多相关《工程设计说明书.docx(29页珍藏版)》请在冰豆网上搜索。
工程设计说明书
1.总论
随着科学的发展、时代的进步、人口的迅猛增长,人类赖以生存和发展的环境受到污染,水资源短缺和水环境污染的程度日益加剧,使得城市污水的有效回收利用
成为一项紧迫的任务。
水资源的污染及短缺是当今社会面临的一个重大问题。
据统计,2000年我国城
市污水排放量已达332亿立方米,其中绝大部分水未经有效处理而排入江河湖海。
全国90%以上的城市水域受到不同程度的污染,近50%的重点城镇的集中饮用水源不符合标准。
我国北方城市大部分受到资源型缺水困扰,南方多水地区由于受到不同程度的污染,已经呈现缺水趋势。
因此,增加污水处理比例和将污水处理之后再回用是今后我国城市污水处理的趋势。
城市污水包括生活污水、工业废水和径流污水等,由城市排水管网汇集并输送到污水处理厂进行处理。
城市污水处理工艺因地制宜采用多种形式,要根据城市污水的利用或排放去向同时考虑水体的自然净化以及污水在利用过程中的净化作用.确定废
水的处理程度及相应的处理工艺。
处理后的污水,无论用于工业、农业或外排,均应符合国家规定标准。
城市污水处理分为三个级别,即一级处理(机械处理)、二级处理(生物处理)、三级处理(高级处理)。
一级处理主要采用格栅、沉砂池、沉淀池等构筑物,去除污水中不溶解的悬浮物等。
二级处理主要去除一级沉淀池出水中的胶体和溶解性有机物。
典型设备是生物曝气池(或生物滤池)和二次沉淀池。
三级处理主要去除二级出水中营养物(氮和磷)及其他难降解物质。
主要方法有絮凝、过滤、吸附、离子交换等物化法。
三级处理的目的是避免水体富营养化或回用水。
1.1设计任务和内容
1.1.1工程设计的目的
工程设计是环境工程专业重要的实践教学环节,教学时间为三周。
工程设计以城
市污水处理厂工艺为主线,要求学生利用所学知识,在教师的指导下提出工艺设计方案,进行工艺设计计算,编制设计说明文件,绘制工艺条件图等系统训练。
1.1.2设计题目
某城市污水处理厂工艺设计
1.1.3设计要求
(1)完成主要处理构筑物的设计布置;
(2)工艺选择、设备选型、技术参数、性能、详细说明;
(3)提交的成品:
设计说明书、单元设备工艺条件图、污水处理厂平面布置图。
1.1.4设计内容
(1)进行一般水处理构筑物的工艺设计计算;
(2)编制设计说明文件;
(3)设计图纸:
污水处理厂平面图,绘制单元设备工艺条件图。
1.1.4设计任务
设计进、出水水质及排放标准
项目CODcr(mg/L)BOD5(mg/L)SS(mg/L)NH3-N(mg/L)
进水水质CODcr=430mg/LBOD5=220mg/LSS=260mg/LNH3-N=16mg/L
出水水质CODcr<70mg/LBOD5<20mg/LSS<30mg/LNH3-N<5mg/L
1.2基本资料
(1)污水水量与水质:
污水处理水量:
10万m.d
污水水质:
CODcr=430mg/LBOD5=220mg/LSS=260mg/LNH3-N=16mg/L
(2)处理要求:
污水经过二级处理后应符合以下具体要求:
CODcr<70mg/LBOD5<20mg/LSS<30mg/LNH3-N<5mg/L
0.3%—0.5%o,地形西北高、东南低。
厂区面积为东西厂380m南北长280m
2.污水处理工艺流程及构筑物说明
2.1污水处理工艺流程
处理工艺具体流程如下:
污水一粗格栅一污水泵房一细格栅一沉砂池一初沉池一氧化沟一出水
2.2主要构筑物说明
221格栅
格栅是一组(或多组)相平行的金属栅条与框架组成,倾斜安装在进水的渠道,或进水泵站集水井的进口处,以拦截污水中较大的悬浮物及杂质,以保证后续处理构筑物或设备的正常工作.按格栅栅条间距的大小不同,格栅分为粗格栅、中格栅和细格栅3
类。
按格栅的清渣方法,有人工格栅和机械格栅两种。
格栅设备一般用于污水处理的进水渠道上或提升泵站集水池的进口处,主要作用是去除污水中较大的悬浮或漂浮物,以减轻后续水处理工艺的处理负荷,并起到保护水泵、管道、仪表等作用。
当拦截的栅渣量大于0.2m3/d时,一般采用机械清渣方式;栅渣量小于0.2m3/d时,可采用人工清渣方式,也可采用机械清渣方式。
本设计采用机械格栅。
本设计格栅为平面型,倾斜安装机械格栅。
格栅过栅流速不宜小于0.6m/s,不宜
大于1.5m/so栅前水深应与入厂污水管规格相适应。
2.2.2沉砂池
沉砂池一般是设在污水处理厂生化构筑物之前的泥水分离的设施。
分离的沉淀物
质多为颗粒较大的砂子,沉淀物质比重较大,无机成分高,含水量低。
污水在迁移、流动和汇集过程中不可避免会混入泥砂。
污水中的砂如果不预先沉降分离去除,则会
影响后续处理设备的运行。
最主要的是磨损机泵、堵塞管网,干扰甚至破坏生化处理工艺过程。
本设计选用平流式沉砂池,两座并行运行,水力停留时间宜选50s,沉砂量可选
0.05-0.1L/m3,贮砂时间为两天,连续排砂。
2.2.3初沉池
沉淀池一般是在生化前或生化后泥水分离的构筑物,多为分离颗粒较细的污泥。
在生化之前的称为初沉池,沉淀的污泥无机称为较多,污泥含水率相对于二沉池污泥低些。
辐流式,表面负荷为q=2.0-3.0m3/(m2h),沉淀时间为1.5-2h,SS去除率50-60%。
224曝气池
利用活性污泥法进行污水处理的构筑物。
池内提供一定污水停留时间,满足好氧
微生物所需要的氧量以及污水与活性污泥充分接触的混合条件。
曝气池主要由池体、曝气系统和进出水口三个部分组成。
池体一般用钢筋混凝土筑成,平面形状有长方形、方形和圆形等。
曝气方法主要有鼓风曝气和机械曝气。
本设计采用鼓风曝气,污泥负荷为0.3kgBOD5/kgMLVSS・d,SVI值选120-150ml/g,污泥浓度不宜大于3500mg/L。
2.2.5曝气池利用卡鲁塞尔(Carrousel)氧化沟的说明
氧化沟(OxidationDitch)是本世纪50年代由荷兰工程师发明的一种新型活性污泥法,其曝气池呈封闭的沟渠形,废水和活性污泥的混合液在其中不断循环流动,因此被称为“氧化沟”。
实际上它是活性污泥法的一种变型,因为废水和活性污泥的混合液在环状的曝气渠道中不断循环流动,有人称其为“循环曝气池”、“无终端的曝
气系统”。
自1954年荷兰建成第一座间歇运行的氧化沟以来,氧化沟在欧洲、北美、南非及澳大利亚得到了迅速的推广应用。
至1985年,美国已建有553座氧化沟污水
处理厂,荷兰216座,西德226座,丹麦300座。
其工艺和构造也有了很大的发展和进步,处理能力不断提高,至今已有规模达65万m3/d的大型氧化沟处理厂;处理
范围不断扩大,不仅能处理生活污水,也能处理工业废水、城市废水,而且在脱氮除磷方面表现了极好的性能。
我国近年来在氧化沟技术的研究及推广应用方面有了很迅速的发展。
尤其在城市污水处理厂中获得应有的推广。
(1)氧化沟的技术特征
氧化沟污水处理技术能在近五十年来取得迅速的发展,主要是由于它出水水质好,运行稳定,管理方便,并具有区别于传统活性污泥法的一系列技术特征,现概括如下:
1.采用的技术参数:
氧化沟常用的技术参数如下:
有机物容积负荷0.2〜0.4kgBOD5/m3-d
有机物污泥负荷0.05〜0.15kgBOD5/kgVSS-d
水力停留时间10〜24hr
污泥龄10〜30day
活性污泥浓度2000〜6000mg/L
出水水质BOD510〜15mg/L
SS10〜20mg/L
NH3-N1〜3mg/L
氧化沟所采用的有机物负荷和水力停留时间与延时曝气法接近,但所取得的出水
水质较好。
当然,氧化沟也可采用不同于上列的技术参数。
如采用较高的有机物负荷、较短的水力停留时间,使其运行的特征接近于高负荷活性污泥法或其他类型的活性污泥法。
2•采用的处理流程:
以氧化沟处理城市污水时,可不设初次沉淀池,悬浮状有机物可在氧化沟中得到好氧稳定,这比设初沉池及污泥稳定池要经济。
由于氧化沟所采用的污泥龄很长,其剩余污泥量少于一般活性污泥法,而且已经得到好氧稳定,不需再经污泥消化处理。
为防止无机沉渣在氧化沟中积累,原污水应先经格栅及沉砂池预处理。
般,氧化构污水厂的处理流程如图1-1所示:
2.2.6氧化沟的优缺点分析
氧化沟优点:
一体化氧化沟除一般氧化沟所具有的优点外,还有以下独特的优点:
1工艺流程短,构筑物和设备少,不设初沉池、调节池和单独的二沉池;
2污泥自动回流,投资少、能耗低、占地少、管理简便;
3造价低,建造快,设备事故率低,运行管理工作量少;
4固液分离效果比一般二次沉淀池高,使系统在较大的流量浓度范围内稳定运行。
氧化沟缺点:
尽管氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。
但是,在实际的运行过程中,仍存在一系列的问题。
1.污泥膨胀问题
当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。
微生物的负荷高,细菌吸取了大量营养
物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。
针对污泥膨胀的起因,可采取不同对策:
由缺氧、水温高造成的,可加大曝气量或降低进水量以减轻负荷,或适当降低MLSS(控制污泥回流量),使需氧量减少;
如污泥负荷过高,可提高MLSS以调整负荷,必要时可停止进水,闷曝一段时间;可通过投加氮肥、磷肥,调整混合液中的营养物质平衡(B0D5N:
P=100:
5:
1);
pH值过低,可投加石灰调节;漂白粉和液氯(按干污泥的0.3%~0.6%投加),能抑制
丝状菌繁殖,控制结合水性污泥膨胀。
2.泡沫问题
由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。
用表面喷淋水或除沫剂去除泡沫,常用除沫剂有机油、煤油、硅油,投量为0.5~1.5mg/L<通过增加曝气池污泥浓度或适当减小曝气量,也能有效控制泡沫产生。
当废水中含表面活性物质较多时,易预先用泡沫分离法或其他方法去除。
另外也可考虑增设一套除油装置。
但最重要的是要加强水源管理,减少含油过高废水及其它有毒废水的进入
3.污泥上浮问题
当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。
发生污泥上浮后应暂停进水,打碎或清除污泥,判明原因,调整操作。
污泥沉降性差,可投加混凝剂或惰性物质,改善沉淀性;如进水负荷大应减小进水量或加大回流量;如污泥颗粒细小可降低曝气机转速;如发现反硝化,应减小曝气量,增大回流或排泥量;如发现污泥腐化,应加大曝气量,清除积泥,并设法改善池内水力条件
4.流速不均及污泥沉积问题
在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。
一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到
0.3~0.5m/s。
氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250~300mm转盘的浸没深度为480~530mm与氧化沟水深(3.0~3.6m)相比,转刷只占了水深的1/10~1/12,转盘也只占了1/6~1/7,因此造成氧化沟上部流速较大(约为0.8~1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混
合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧
化沟的有效容积,降低了处理效果,影响了出水水质。
加装上、下游导流板是改善流速分布、提高充氧能力的有效方法和最方便的措施。
上游导流板安装在距转盘(转刷)轴心4.0处(上游),导流板高度为水深的1/5~1/6,并垂直于水面安装;下游导流板安装在距转盘(转刷)轴心3.0m处。
导流板的材料可以用金属或玻璃钢,但以玻璃钢为佳。
导流板与其他改善措施相比,不仅不会增加动力消耗和运转成本,而且还能够较大幅度地提高充氧能力和理论动力效率
另外,通过在曝气机上游设置水下推动器也可以对曝气转刷底部低速区的混合液循环流动起到积极推动作用,从而解决氧化沟底部流速低、污泥沉积的问题。
设置水下推动器专门用于推动混合液可以使氧化沟的运行方式更加灵活,这对于节约能源、提高效率具有十分重要的意义。
2.2.7二沉池
1.沉淀池的类型及选择
沉淀池是分离悬浮固体的一种常用构筑物,二沉池是活性污泥处理系统的重要组成部分,其作用是泥水分离,使混合液澄清,浓缩和回流活性污泥。
沉淀池常按池内水流方向不同分为平流式沉淀池、竖流式沉淀池和辐流式沉淀池三种。
本设计中二沉池采用中心进水,周边出水的辐流式沉淀池[3]。
辐流式沉淀池多呈圆形,池的进水在中心为止,出口在周围。
水流在池中呈水平方向向四周辐射,由于过水断面面积不断变大,故池中的水流速度从池中心向池四周逐渐减慢。
泥斗设在池中央,池底向中心倾斜,污泥常用刮泥机(或吸泥机)机械排除。
其主要的特点是采用机械排泥,运行较好;排泥设备有定性产品[3]。
2.辐流式二沉池的设计参数
辐流式二沉池的设计参数如下:
(1)池子直径(或者正方形的一边)与有效水深的比值大于6;
(2)池径不宜小于16m
(3)池底坡度一般采用0.05~0.1m;
(4)一般采用机械刮泥,也可附有空气提升或净水头排泥设施;
(5)当池径(或正方形的一边)较小(小于20m时,也可采用多斗排泥;
(6)停留时间2.5~3h;
(7)表面负荷:
0.6~1.5m3/(m2-h)0
2.2.8污泥浓宿池
污泥浓缩是降低污泥含水率、减少污泥体积的有效方法。
污泥浓缩主要减缩污泥的间隙水。
经浓缩后的污泥近似糊状,仍保持流动性。
它是减少水处理构筑物排出
的污泥的含水量,以缩小其体积的一种污泥处理方法。
适用于含水率较高的污泥。
例如活性污泥,其含水率高达99%左右。
当污泥含水率由99%降至96%时,污泥的体积可缩小到原来的1/4。
为了对污泥有效地、经济地进一步处理,须先进行浓缩。
浓缩后的污泥含水率一般为95〜97%o污泥浓缩中所排出的污泥水含有大量有机物质,一般混入原污水一起处理;不能直接排放,以免污染环境。
污泥浓缩的方法有沉降法、气浮法和离心法。
在选择浓缩方法时,除了各种方法本身的特点外,还应考虑污泥的性质、来源、整个污泥处理流程及最终处置方式等。
如沉降法用于浓缩初沉淀污泥和剩余活性污泥的混合污泥时效果较好。
单纯的剩余活
性污泥一般用气浮法浓缩,近年发展到部分采用离心法浓缩。
这里我们主要采用重力浓缩法,通过污泥浓缩池,进行污泥的浓缩。
浓缩池的构造类似沉淀池,大多采用直径为5〜20米的圆池,内设搅拌机械作缓慢搅拌。
污泥在
浓缩池中的停留时间,一般为12小时左右。
浓缩池的表面污泥固体负荷率,视污泥性质而不同,初次沉淀池污泥为100〜150公斤/(米2•日),活性污泥为20〜40公斤/(米2•日)。
在浓缩池中,固体颗粒借重力下降,水分从泥中挤出,浓缩污泥从池底排出,污泥水从池面堰口外溢(连续式)或从池侧出水口流出。
气浮浓缩法和重力浓缩法相反,使污泥颗粒附上微细气泡而上浮至水面,然后用刮板将浓缩污泥刮入排泥
槽,污泥水则从池底流出(见气浮)。
对于颗粒比重仅略大于1的污泥,如活性污泥
和需气消化法的污泥,本法尤为适用。
气浮浓缩常用溶气气浮法,设备有气浮池、加压泵、溶气罐和减压释气器(阀)。
溶气压力一般为0.3〜0.5兆帕。
每平方米气浮
池每日处理的固体量,对一般污水污泥为100〜200公斤,对活性污泥为25〜100公斤。
为提高气浮浓缩效果,亦可投加混凝剂。
3.处理构筑物设计
3.1格栅间和泵房
3.1.2格栅的设计计算
(一)格栅的设计要求:
1.污水处理系统前格栅条间隙,应该符合以下要求:
a:
人工清除25〜40mm
b:
机械清除16〜25mm
c:
最大间隙40mm污水处理厂也可设细粗两格栅。
2.若水泵前格栅间隙不大于25mm时,污水处理系统前可不再设置格栅。
3.在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2吊),一般采用机械
清除。
4.机械格栅不宜小于两台,若为若为一台时,应设人工清除格栅备用。
5.过栅流速一般采用0.6〜1.0m/s。
6.格栅前渠道内的水速一般采用0.4〜0.9m/s。
7.格栅倾角一般采用45〜75度,人工格栅倾角小的时候较为省力但占地多
8.通过格栅水头损失一般采用0.08〜0.15m
9.格栅间必须设置工作台,台面应该高出栅前最高设计水位0.5m.工作台上应有安全
和冲洗设施。
10.格栅间工作台两侧过道宽度不应小于0.7m
(二)格栅的具体计算:
1.栅条的间隙数n个
QmaxSin:
n=
bhv
式中:
Qmax——最大设计流量,120000m3/d,即1.39m3/s
a格栅倾角,取a=60;
b栅条间隙,m,取b=0.05m;
n——栅条间隙数,个;
h栅前水深,m,取h=0.8m;
v过栅流速,m/s,取v=0.9m/s;
则:
门二丄39Sin-6018(个)取n=15(个)
2汉0.05疋0.8疋0.9
则每组中格栅的间隙数为18个。
2.栅条宽度(B):
设栅条宽度S=0.01m
则栅槽宽度B2=S(n?
)bn=0.01(18-1)0.0518=1.07
3.进水渠道渐宽部分的长度l1。
设进水渠道B=0.9m,其渐宽部分展开
=20
B-B_1.07-0.9
112tan:
「2tan20°
:
0.2335(m)
4.格栅与出水总渠道连接处的渐窄部长度12,m
110.24
|210.12(m)
222
5.通过格栅的水头损失h1,m
2
S、4/3■
h广k(b)亦Sin:
式中:
h1设计水头损失,m;
2
g重力加速度,m/s
k——系数,格栅受污物堵塞时水头损失增大倍数,一般采用3;
B------格栅条的阻力系数,查表取2.42
=32.42(
0.01)4/3
0.92
29.81
sin60
=0.030359m
6.栅槽总长度L,m
L斗l21.00.5巴tana
式中,Hi为栅前渠道深
」^=2.5
tan600
然后自然通过氧化
二沉污水总提升流程为4.10m,常采用螺旋泵,其设计提升高度为
量Q=4166.67m3/h,采用3台螺旋泵,单台提升流量为
max
LXB-1500型螺旋泵4台,3用1备。
该泵提升流量为2100-2300m3/h,转速42r/min,投书3,功率55kW占地面积为(2.0016.0)m2。
H=4.3m。
1875m3/h
设计流
。
采用
L=0.240.120.151.00.5
7.栅后槽总高度H,m设栅前渠道超高h2=0.3m
H十巾20.8二0.0303590.30.8=1.2m
8.每日栅渣量Wm3/d
W=86400QW1
Jmax1000x:
Kz
式中,W1为栅渣量,m3/103m3污水,格栅间隙16〜25mm时,W1=0.10〜0.05m3/103m3、一333
污水;取W1=0.05m/10m。
86400汇1.397.053
W5.004(m3/d)
10000.2
采用机械清渣。
3.1.3提升泵站的设计
(1)设计说明
采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。
污水经提升后入瀑气沉砂池。
沟,二沉池及消毒池。
设计流量Qmax=4166.67m/h。
(2)设计选型
-0.00m,
则相应
污水经消毒池处理排入城市污水处理厂。
消毒水面相对高程为
(三)提升泵房
螺旋泵泵体室外安装,电视,减速机,电控柜,电磁流量计显示器室内安装,另
外考虑一定检修空间。
2
提升泵房占地面积为15.0・0.5F.O10.°=(265.o)m,其工作间占地面积为
11.010.0=110.0m2
3.2沉砂池设计计算
设计中选择二组平流沉砂池,N=2,分别与格栅连接,每组沉砂池设计流量为0.7m3/s
1.沉沙池长度
式中:
L-----沉砂池的长度(m)
V-----设计流量时的流逝(m/s);—般为0.15-0.3m/st-----设计流量时的流行时间(s);—般为30-60s设计中取v=0.25;t=50s则L=0.2550=12.5m
2.水流过水断面面积
AQ0.72
A2.78m
u0.25
3.宽度
h2
m);
式中B----沉砂池宽度(cm)h2----设计有效水深
设计中取h2=0.8;每组沉砂池设五格
2.78/5
0.8
=0.7m
4.沉砂室所需容积
QXT86400
式中:
Q-----平均流量(m3/s);
X城市污水沉沙量
T清除沉砂的间隔时间
设计中取Q=10万m3/d=1.16m/s;除砂的时间间隔T=2d;X=80m3/106m3污水
1.1680296400
10
3
=16.04m
5.每个沉砂斗容积
V
V。
一
n
式中70--每个沉砂斗容积(m3)n沉砂斗的个数
设计中取每个分割有2个沉砂斗,共有n=225=20(个)
V。
=晋".802(口3)
6.沉砂斗高度
沉砂斗高度应能满足沉砂斗储存的要求,沉砂斗的倾角:
3Vo
2
ha=
1式中ha'
--沉砂斗的高度(m)
沉砂斗上口面积
-60
f2
沉砂斗下口面积
设计中取fi为0.7X0.7
0.5X0.5
37.802
0.70.7.0.720.520.50.5
=2.208m
设计中取h3'为2.208m,校核沉砂斗角度tan〉
3.475—0.5
=2.022
:
=88.460
7.沉砂室高度
h3_h3il2
式中:
h3—沉砂室高度,(m)
i沉砂池底坡度
l2-----沉砂池底长度(m)
设计中取i=0.02
1
h3=2.2080.02§(12.5—20.7)=2.193(m)
8.沉砂池总高度
H=h1h2h3
式中H-----沉砂池总高度(m)h1----沉砂池超高(m);设计中取0.3
贝UH=0.30.82.193=3.293m
9.验算最小流速
min
Qi
min
niAmin
式中
umi-——最小流速(m/s)
Qi------最小流量(m
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程设计 说明书