第十册数学第五单元教学设计.docx
- 文档编号:6518962
- 上传时间:2023-01-07
- 格式:DOCX
- 页数:18
- 大小:142.90KB
第十册数学第五单元教学设计.docx
《第十册数学第五单元教学设计.docx》由会员分享,可在线阅读,更多相关《第十册数学第五单元教学设计.docx(18页珍藏版)》请在冰豆网上搜索。
第十册数学第五单元教学设计
第十册数学第五单元教学设计
一、单元名称:
体积与体积单位P26——P38
二、学生知识基础与教材分析
1.学情分析:
体积的认识,是平面图形到立体图形的一个空间观念的飞跃,由于学生之前有学习过立体图形,再加上生活经验,已对体积的知识有初步感觉,如直观的比较两个物体的体积大小,以及体积的守恒性,在生活中都有原型,因此本单元教学主要是紧密结合学生的生活经验,并把生活中的体验先上升抽象到概念的层次,然后再还原到解决实际问题。
2、教材分析:
(1)体积的认识:
在感悟了物体的体积就是物体所占空间大小后,通过玩黏土、叠积木等活动体会物体体积的守恒性。
(2)认识体积单位:
重点在于学生通过看直观立体图,在理解的基础上熟记相邻体积单位间的进率,能较熟练的进行体积单位间的换算。
(3)长方体正方体的体积计算:
在计算长方体、正方体的体积之前,教材还编排了对长方体和正方体的再认识,通过了解和发现长方体和正方体棱长和面的特点,加深对它们的认识,从而也为后面的体积表面积计算的做下铺垫。
在正式的体积推导过程中,教材先给学生一个长、宽、高均为整数的长方体,用1立方厘米的正方体积木做桥梁,让学生经历从搭到数,再到算,最终发现就可以由长、宽、高相乘得出体积的这个过程。
使学生对长方体正方体的公式有了深刻的体验。
(4)组合体的体积计算:
这个内容是新教材的一个新的拓展,不仅对长方体和正方体的体积计算要灵活掌握,还要学会合理分割,找对应数据。
3、本单元主要内容:
体积和体积单位的认识、长方体和正方体的体积计算、简单的组合体体积计算。
体积与体积单位
三、结构图
长方体正方体的体积
组合体的体积
体积单位
体积的初步认识
长方体正方体的再认识
长方体、正方体的体积计算
体积单位的进率
认识dm3、m3
认识cm3
四、单元教学目标
知识和技能
1.初步积累体积经验、了解体积的守恒性。
2.初步认识体积单位:
立方厘米、立方分米、立方米。
3.掌握立方厘米、立方分米、立方米之间的进率。
4.会求长方体、正方体的体积。
5、会计算简单的组合体体积。
过程与方法
1、进一步发展学生的空间想象能力。
2、帮助学生建立体积单位的量感。
3、经历长方体正方体的体积计算的推导过程,从中体会从特殊到一般的研究方法
情感态度和价值观
1、积极参与同伴交流,选择自己喜欢的问题、方法学习。
培养学习数学的兴趣。
2、培养学生严谨踏实、认真计算的学习习惯。
五、单元教学的重点、难点和关键
重点:
长方体和正方体的体积计算
难点:
组合体的体积计算。
关键:
长方体和正方体的体积计算。
六、单元课时和安排
课时
课型
教学内容
教学要求
练习
1.
新授
体积的意义
P26~28
初步积累体积的经验,理解并掌握体积的概念,了解体积的守恒性。
1、动手操作感受体积的存在与守恒性。
2、比较体积的大小
2.
新授
认识立方厘米
P29、30
1、知道立方厘米是体积单位,并初步建立1立方厘米的量感。
2、通过比较体会长度单位、面积单位、体积单位之间的关系。
数方块,算体积。
3.
新授
认识立方分米、立方米
P31
1、会用类推的方法学习立方分米、立方米,并初步建立量感。
2、能根据实际物体的大小应用合适的体积单位。
1、填合适的单位
2、判断
4.
新授
体积单位的进率
P32
1、在理解的基础上掌握体积单位之间的进率。
2、能正确进行体积单位之间的换算。
1、单位换算
2、判断
3、思考
5
新授
长方体和正方体的再认识
P33、34
掌握长方体和正方体面、棱长的特点,为后面学习体积和表面积做铺垫。
1、填空
2、判断
3、实践操作
6
新授
长方体和正方体的体积P35、36
1、会用数的方法去求长方体正方体的体积,理解由数到算的公式推导过程。
2、掌握求体积的计算公式,能根据体积公式正确列式,并能正确计算出体积。
1、看图计算长方体、正方体的体积
2、应用
3、适当拓展
7
练习
长方体和正方体的体积
P37
能灵活地正向、逆向运用长方体、正方体的体积公式。
1、正向计算体积
2、逆向运用公式,已知体积求高
3、适当拓展底面积乘高的体积计算方法。
8
新授
组合体的体积P38
1、能通过合理的划分、寻找正确的数据来计算组合体的体积。
2、培养空间想象能力。
看图计算组合体的体积
9
练习
组合体的体积练习课
1、能正确计算组合体的体积。
2、通过一题多解培养学生发散思维。
看图计算组合体的体积
10
练习
综合练习
熟练掌握各种关于体积的知识,并灵活解决问题。
1、综合练习
2、适当拓展
体积的意义课课练
1、体积的直接比较
(1)下面两根木料长度一样,体积一样大吗?
(2)下面两本书的封面一样大,体积一样大吗?
(3)下面哪只苹果的体积大?
2、把一杯水倒入另一只杯子里,水的高度发生了变化,体积变了吗?
(不计损耗的情况下)
立方厘米课课练
一、填空
1、棱长1厘米的正方体,他的体积是()。
4块这样的正方体,他的体积是()。
2、数一数、填一填:
(下图个图形是由棱长1厘米的小正方体组成)
上图体积是()上图体积是()上图体积是()
上图体积是()上图体积是()
3、
正方体由()块1立方厘米的正方体积木组成,他的体积是()。
立方厘米、立方分米课课练
1、棱长1分米的正方体,他的体积是()。
7块这样的正方体,他的体积是()。
2、一个棱长1分米的正方体可由()个1立方厘米的小正方体组成。
3、1立方分米=()立方厘米。
4、棱长3分米的正方体,他由()块1立方分米的正方体积木搭成。
他的体积是()。
5、1dm3=()cm3
1.24dm3=()cm3
0.3dm3=()cm3
1350cm3=()dm3
5dm3=()cm3
24000dm3=()cm3
3.5dm3=()dm3()cm3
3dm36cm3=()cm3=()dm3
4dm3+50cm3=()dm3=()cm3
6、填上合适的单位
(1)一块橡皮的体积是4()。
(2)一个铅笔盒的体积是1.5()。
(3)一台录音机的体积是12()。
《长方体和正方体的体积》课课练
一、填空:
1、看图填空:
(填上名称)
(1)长方体是由__________个长方形的面围成的立体图形。
(2)在一个长方体中,相对的面______________,互相平行的棱_____________。
(3)在长方体中交于一个顶点的三条棱的长度分别叫做长方体的______、______、______。
(填上名称)
(4)长、宽、高相等的长方体叫做__________,也叫做_________。
(5)正方体的六个面都是正方形,这个正方形大小________。
2、填空:
(1)一个长方体的长是8厘米,宽是4厘米,高是3厘米,这个长方体的棱长之和是_________厘米。
(2)用一根长48分米的铁丝围成一个正方体,棱长为_________分米。
(3)若长方体的长为a厘米,宽为b厘米,高为h厘米,请用字母公式表示下列数量:
1底面积是____________平方厘米;
2上、下两个面的面积是____________平方厘米;
3前、后两个面的面积是____________平方厘米;
4左、右两个面的面积是____________平方厘米。
二、判断:
1)长方形的六个面都是长方形。
()
2)一个长方体木料,横截成3段,增加了6个面。
()
3)底面是正方形的长方体,一定是正方体。
()
三、实践操作练习:
用直尺测量你的数学书,它的长是_______厘米;宽是_______厘米;高是_______厘米。
数学书封面的面积。
《长方体和正方体的体积》课课练
一、求下图中的长方体、正方体的体积各是多少立方厘米?
二、填空:
1、计算长方体的体积字母公式是:
__________________。
计算正方体的体积字母公式是:
__________________。
2、一个长方体的长是0.3米,宽是2分米,高是40厘米,这个长方体的体积是__________立方厘米。
3、一个正方体的棱长是30厘米,它的体积是__________立方分米。
4、一个长方体的体积是12立方分米,长是25厘米,宽是24厘米,高是__________厘米。
5、一个长方体的体积是70立方厘米,高是5厘米,长方体的底面积是__________平方厘米。
6、一个长8分米,宽2分米,高6分米的长方体的盒子内能放________个棱长为2分米的正方体木块。
7、一个长方体的长、宽和高分别都扩大3倍,它的体积就扩大_______倍。
二、应用题:
1、测得一个长方体的小木盒长是20cm,宽是8cm,高是12cm。
这个小木盒的体积是多少立方厘米?
2、一个正方体的魔方,测得9cm,它的体积是多少立方厘米?
3、有一个棱长是60厘米的正方形铁块,现把它铸成宽和厚都是4厘米的长方形铁条,这根铁条长多少米?
4、一个正方体水箱,高为10分米,里面盛满了水,如果把水全部倒入一个长为10分米,宽为20分米的长方体水箱里,水深为多少分米?
三、拓展:
1、一块长方形木料,长8分米,宽4分米,厚2分米,如果把它锯成最大的正方体木料(原材料不浪费),可以锯成___________块。
2、把8立方米的塑胶铺在宽4米,长50米的跑道上,塑胶的平均厚度是______厘米。
长方体正方体体积课课练
一、利用公式,求下列长方体和正方体的体积。
0.3m
5cm
0.3m
12cm
5cm
0.3m
二、应用题。
1、一块玻璃台板,长150cm,宽80cm,厚0.5cm,这块玻璃台板的体积是多少?
2、一个长方体的体积与一个正方体的体积相等,已知正方体的棱长为4分米,长方体的高1米,长方体的底面积是多少?
3、一个正方体的棱长之和是72厘米,这个正方体的体积是多少?
4、把一块棱长为60厘米的正方体钢材,锻造成高和宽都是30厘米的长方体钢材,锻造成的钢材长多少厘米?
(不计损耗)
5、把3个棱长是2厘米的正方体,拼成一个长方体,这个长方体的体积是多少?
组合体的体积课课练
0.6
一、计算下面图形的体积。
0.3
0.8
0.3
0.3
1.2
(单位:
dm)(单位:
m)
二、算算它们的体积各是多少立方厘米?
5
10
4
10
6
4
4
10
62
3
3
5
75
6
5
66410
5
第五单元测验参考
一、单位换算
1、0.9立方米=()立方分米540立方厘米=()立方分米
38立方分米=()立方米2.5平方米=()平方分米
1.02m3=()dm3960dm3=()m3
23dm3=()cm336000cm3=()dm3
0.25m3=()cm3
5.07dm3=()dm3()cm33m380dm3=()m3
二、填空:
(1)450立方米65毫升3米25平方米
一根木料长____________;一间客厅____________;
一瓶眼药水____________;一个仓库能容纳____________;
(2)一只铅笔盒的体积是360()。
(3)物体______________________________的大小叫做物体的体积;常用的体积单位有_________、_________、_________。
三、判断:
(1)体积单位比面积单位大。
()
(2)3.04立方分米=304立方米。
()
(3)把一个长方体铁块熔铸成一个正方体,形状变了,所以所占空间的大小也变了。
()
四、求下列图形的体积
0.8
0.8
0.8
(单位:
m)(单位:
dm)
15
11
7
11
9
4
1
1
1
1
3
13
单位(cm)单位(cm)
7
7
3
6
4
11
3
4
7
3
10
(单位:
m)(单位:
cm)
四、
(1)思考:
至少要用多少个棱长为1厘米的正方体又可以拼成一个正方体?
1cm
(2)12个小正方体,能够摆成多少种不同的正方体?
本单元由以下学校提供:
远东小学、马陆小学、新城路小学、清水路小学
组长:
远东小学陈明静
2009-4-30
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十 数学 第五 单元 教学 设计