三角形全章复习及巩固基础知识讲解Word版.docx
- 文档编号:6377067
- 上传时间:2023-01-05
- 格式:DOCX
- 页数:14
- 大小:249.17KB
三角形全章复习及巩固基础知识讲解Word版.docx
《三角形全章复习及巩固基础知识讲解Word版.docx》由会员分享,可在线阅读,更多相关《三角形全章复习及巩固基础知识讲解Word版.docx(14页珍藏版)》请在冰豆网上搜索。
三角形全章复习及巩固基础知识讲解Word版
《三角形》全章复习与巩固(基础)
【学习目标】
1.理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.
2.理解并会应用三角形三边关系定理;
3.了解三角形中三条重要的线段并能正确的作图.
4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.
5.掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.
【知识网络】
【要点梳理】
要点一、三角形的内角和
三角形内角和定理:
三角形的内角和为180°.
要点诠释:
应用三角形内角和定理可以解决以下三类问题:
①在三角形中已知任意两个角的度数可以求出第三个角的度数;
②已知三角形三个内角的关系,可以求出其内角的度数;
③求一个三角形中各角之间的关系.
要点二、三角形的分类
1.按角分类:
要点诠释:
①锐角三角形:
三个内角都是锐角的三角形;
②钝角三角形:
有一个内角为钝角的三角形.
2.按边分类:
要点诠释:
①不等边三角形:
三边都不相等的三角形;
②等腰三角形:
有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;
③等边三角形:
三边都相等的三角形.
要点三、三角形的三边关系
1.定理:
三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.
要点诠释:
(1)理论依据:
两点之间线段最短.
(2)三边关系的应用:
判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.
(3)证明线段之间的不等关系.
2.三角形的重要线段:
一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.
一个三角形有三条角平分线,它们交于三角形内一点.
三角形的三条高所在的直线相交于一点的位置情况有三种:
锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.
要点四、全等三角形的性质与判定
1.全等三角形的性质
全等三角形对应边相等,对应角相等.
2.全等三角形的判定定理
全等三角形判定1——“边边边”:
三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).“
全等三角形判定2——“角边角”:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
全等三角形判定3——“角角边”:
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)
全等三角形判定4——“边角边”:
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).
要点诠释:
(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;
(2)可以从已知出发,看已知条件确定证哪两个三角形全等;
(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.
要点五、用尺规作三角形
1.基本作图
利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;
要点诠释:
要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.
【典型例题】
类型一、三角形的内角和
1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.
【思路点拨】由三角形的内角和,建立方程解决.
【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理,
得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.
【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.
举一反三
【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______
【答案】60°,70°.
类型二、三角形的三边关系及分类
2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.
【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.
【答案与解析】三角形的两边长分别是2和7,则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.
【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.
举一反三
【变式】如果三角形的两边长分别为2和6,则周长L的取值范围是()
A.6<L<15 B.6<L<16 C.11<L<13 D.12<L<16
【答案】D.
3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()
A锐角三角形B等腰三角形C等腰锐角三角形
【答案】C
举一反三
【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形
A锐角B直角C钝角D无法判断
【答案】C
【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.
类型三、三角形的重要线段
4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )
A.40°B.45°C.50°D.55°
【思路点拨】首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.
【答案】A;
【解析】
解:
∵∠B=67°,∠C=33°,
∴∠BAC=180°-∠B-∠C=180°-67°-33°=80°
∵AD是△ABC的角平分线,
∴∠CAD=
∠BAC=
×80°=40°
【总结升华】本题考查了三角形的内角和定理,属于基础题,比较简单.
举一反三
【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线,则∠DAE的度数为_________.
【答案】10°.
类型四、全等三角形的性质和判定
5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:
结论中不得含有未标识的字母);
(2)证明:
DC⊥BE.
【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE≌△ACD;通过全等三角形的性质,通过倒角可证垂直.
【答案与解析】
解:
(1)△ABE≌△ACD
证明:
∠BAC=∠EAD=90°
∠BAC+∠CAE=∠EAD+∠CAE
即∠BAE=∠CAD
又
AB=AC,AE=AD,
△ABE≌△ACD(SAS)
(2)由
(1)得∠BEA=∠CDA,
又
∠COE=∠AOD
∠BEA+∠COE=∠CDA+∠AOD=90°
则有∠DCE=180°-90°=90°,
所以DC⊥BE.
【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.
举一反三
【变式】如图,已知:
AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:
BD=CE.
【答案】
证明:
∵AE⊥AB,AD⊥AC,
∴∠EAB=∠DAC=90°
∴∠EAB+∠DAE=∠DAC+∠DAE,即∠DAB=∠EAC.
在△DAB与△EAC中,
∴△DAB≌△EAC(ASA)
∴BD=CE.
6.己知:
在ΔABC中,AD为中线.求证:
AD<
【答案与解析】
证明:
延长AD至E,使DE=AD,
∵AD为中线,
∴BD=CD
在△ADC与△EDB中
∴△ADC≌△EDB(SAS)
∴AC=BE
在△ABE中,AB+BE>AE,即AB+AC>2AD
∴AD<
.
【总结升华】用倍长中线法可将线段AC,2AD,AB转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.
举一反三
【变式】若三角形的两边长分别为5和7,则第三边的中线长
的取值范围是()
A.1<
<6B.5<
<7C.2<
<12D.无法确定
【答案】A;
提示:
倍长中线构造全等三角形,7-5<
<7+5,所以选A选项.
类型五、全等三角形判定的实际应用
7.如图,小叶和小丽两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.
【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,从而得知两家的距离.
解:
在点B所在的河岸上取点C,连结BC,使CD=CB,利用测角仪器使得∠B=∠D,且A、C、E三点在同一直线上,测量出DE的长,就是AB的长.
在△ABC和△ECD中
∴△ABC≌△ECD(ASA)
∴AB=DE.
【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决.由已知易证△ABC≌△ECD,可得AB=DE,所以测得DE的长也就知道两家的距离是多少.
类型六、用尺规作三角形
8.作图:
请你作出一个以线段a为底边,以∠α为底角的等腰三角形(要求:
用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)
已知:
求作:
【思路点拨】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,CN交于点A,△ABC就是所求的三角形.
【答案与解析】
解:
已知:
线段a,∠α.
求作:
△ABC,使BC=a,AB=AC,∠ABC=∠α.
△ABC就是所求作的三角形.
【总结升华】考查等腰三角形的画法;会作一个角等于已知角是解决本题的突破点;注意画图的顺序为边,角,角.
举一反三
【变式】作图题:
(要求:
用直尺、圆规作图,保留作图痕迹,不写作法.)
已知:
线段a与线段b.
求作:
线段AB,使AB=2a﹣b.
【答案】
解:
如图所示:
作线段AB即为所求.
【巩固练习】
一.选择题
1.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=( )
A.360°B.250°C.180°D.140°
2.已知三角形两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()
A.13cmB.6cmC.5cmD.4cm
3.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是()
A.在△ABC中,AC是BC边上的高
B.在△BCD中,DE是BC边上的高
C.在△ABE中,DE是BE边上的高
D.在△ACD中,AD是CD边上的高
4.在下列结论中,正确的是()
A.全等三角形的高相等B.顶角相等的两个等腰三角形全等
C.一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等
5.图中的尺规作图是作( )
A.线段的垂直平分线 B.一条线段等于已知线段
C.一个角等于已知角 D.角的平分线
6.如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CDB.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
7.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形
8.若△ABC的∠A=60°,且∠B:
∠C=2:
1,那么∠B的度数为()
A.40°B.80°C.60°D.120°
二.填空题
9.三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为________.
10.△ABC和△ADC中,下列三个论断:
①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:
__________.
11.如图,在△ABC中,ED垂直平分BC,EB=3.则CE长为 .
12.若三角形三个外角的度数比为2∶3∶4,则此三角形内角分别为____
____.
13.如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=
,CD=
,则△ADB的面积为______________.
14.在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线,则∠DAE的度数为_________.
15.如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.
16.如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10
,则ΔOMN的周长=______
.
三.解答题
17.如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:
BQ+AQ=AB+BP.
18.作图题(不写作图步骤,保留作图痕迹).
已知:
在下面的△ABC中,用尺规作出AB边上的高(不写作法,保留作图痕迹)
19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
(1)求∠ECD的度数;
(2)若CE=5,求BC长.
20.已知:
如图,
中,
,AD⊥BC于D,CF交AD于点F,连接BF
并延长交AC于点E,
.
求证:
(1)△ABD≌△CFD;
(2)BE⊥AC.
(注:
可编辑下载,若有不当之处,请指正,谢谢!
)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 复习 巩固 基础知识 讲解 Word