专题11人教版数学九年级上册一元二次方程章末重难点题型.docx
- 文档编号:6355854
- 上传时间:2023-01-05
- 格式:DOCX
- 页数:60
- 大小:250.11KB
专题11人教版数学九年级上册一元二次方程章末重难点题型.docx
《专题11人教版数学九年级上册一元二次方程章末重难点题型.docx》由会员分享,可在线阅读,更多相关《专题11人教版数学九年级上册一元二次方程章末重难点题型.docx(60页珍藏版)》请在冰豆网上搜索。
专题11人教版数学九年级上册一元二次方程章末重难点题型
专题1.1一元二次方程章末重难点题型
【人教版】
【考点1一元二次方程的概念】
【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并
且未知数的最高次数是2的方程,叫做一元二次方程。
【例1】(2020•富顺县校级一模)下列关于x的方程:
①ax2+bx+c=0;②x2
3=0;③x2﹣4+x5=0;④3x=x2.其中是一元二次方程的有( )
A.1个B.2个C.3个D.4个
【变式1-1】(2020春•青羊区校级期末)关于x的方程(m+2)x|m|+mx﹣1=0是一元二次方程,则m=( )
A.2或﹣2B.2C.﹣2D.0
【变式1-2】(2020春•太湖县期末)若关于x的方程
7=0是一元二次方程,则a= .
【变式1-3】(2020秋•新罗区校级期中)已知关于x的方程(m2﹣1)x2+(m﹣1)x﹣2=0.
(1)当m为何值时,该方程为一元二次方程?
(2)当m为何值时,该方程为一元一次方程?
【考点2一元二次方程的一般形式】
【方法点拨】一元二次方程的一般形式:
ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【例2】(2020春•沙坪坝区校级月考)将一元二次方程﹣3x2﹣2=﹣4x化成一般形式ax2+bx+c=0(a>0)后,一次项和常数项分别是( )
A.﹣4,2B.4x,﹣2C.﹣4x,2D.3x2,2
【变式2-1】(2019秋•青龙县期中)已知一元二次方程﹣5x2+16x+3=0,若把二次项系数变为正数,且使得方程根不变的是( )
A.5x2+16x+3=0B.5x2﹣16x﹣3=0
C.5x2+16x﹣3=0D.5x2﹣16x+3=0
【变式2-2】(2020春•招远市期末)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值( )
A.1B.1或2C.2D.±1
【变式2-3】(2020秋•邗江区校级月考)已知M=2x2﹣2x+1,N=ax2+bx+c(a,b,c为常数),若存在x使得M=N,则a,b,c的值可以分别为( )
A.1,﹣1,0B.1,0,﹣1C.0,1,﹣1D.0,﹣1,1
【考点3一元二次方程的解】
【方法点拨】一元二次方程的解(根)的意义:
能使一元二次方程左右两边相等的未知数的值称为一元二
次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.
【例3】(2020春•沙坪坝区校级期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2020+2a﹣2b的值为( )
A.2018B.2020C.2022D.2024
【变式3-1】(2020•中山市校级一模)a是方程x2+x﹣1=0的一个根,则代数式﹣2a2﹣2a+2020的值是( )
A.2018B.2019C.2020D.2021
【变式3-2】(2020春•崇川区校级期末)若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为( )
A.2020B.﹣2020C.2019D.﹣2019
【变式3-3】(2020春•雁塔区校级期末)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m
3的值等于 .
【考点4解一元二次方程(指定方法)】
【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤.
【例4】(2020秋•合肥校级期中)用指定的方法解下列方程:
(1)4(x﹣1)2﹣36=0(直接开平方法)
(2)2x2﹣5x+1=0(配方法)
(3)(x+1)(x﹣2)=4(公式法)
(4)2(x+1)﹣x(x+1)=0(因式分解法)
【变式4-1】(2020春•文登区期末)解下列方程:
(1)(y﹣2)(y﹣3)=12;
(2)4(x+3)2=25(x﹣1)2;
(3)2x2+3x﹣1=0(请用配方法解).
【变式4-2】(2019春•寿县期中)按指定的方法解下列方程:
(1)2x2﹣5x﹣4=0(配方法);
(2)3(x﹣2)+x2﹣2x=0(因式分解法)
【变式4-3】(2019春•崇左期中)用指定的方法解方程:
(1)(y﹣3)2+3(y﹣3)+2=0(因式分解法)
(2)(x+3)(x﹣1)=5(公式法)
【考点5解一元二次方程(换元法)】
【方法点拨】换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
【例5】(2020春•文登区期中)已知实数x满足(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,那么x2﹣2x+1的值为( )
A.﹣1或3B.﹣3或1C.3D.1
【变式5-1】(2020春•崇川区期末)已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣3=0,则代数式x2﹣x+2020的值为 .
【变式5-2】(2020春•开江县期末)基本事实:
“若ab=0,则a=0或b=0”.方程x2﹣x﹣6=0可通过因式分解化为(x﹣3)(x+2)=0,由基本事实得x﹣3=0或x+2=0,即方程的解为x=3或x=﹣2.
(1)试利用上述基本事实,解方程:
3x2﹣x=0;
(2)若实数m、n满足(m2+n2)(m2+n2﹣1)﹣6=0,求m2+n2的值.
【变式5-3】(2020春•龙泉驿区期中)阅读下列材料:
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
例:
用换元法分解因式(x2﹣4x+1)(x2﹣4x+2)﹣12.
解:
设x2﹣4x=y
原式=(y+1)(y+2)﹣12
=y2+3y﹣10
=(y+5)(y﹣2)
=(x2﹣4x+5)(x2﹣4x﹣2)
(1)请你用换元法对多项式(x2﹣3x+2)(x2﹣3x﹣5)﹣8进行因式分解;
(2)凭你的数感,大胆尝试解方程:
(x2﹣2x+1)(x2﹣2x﹣3)=0.
【考点6根的判别式】
【方法点拨】根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.
【例6】(2020•潍坊)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
【变式6-1】(2020•盐田区二模)关于x的方程ax2+(1﹣a)x﹣1=0,下列结论正确的是( )
A.当a=0时,方程无实数根
B.当a=﹣1时,方程只有一个实数根
C.当a=1时,有两个不相等的实数根
D.当a≠0时,方程有两个相等的实数根
【变式6-2】(2020•闽侯县模拟)若关于x的一元二次方程(a﹣2)x2﹣2ax+a=6有两个不相等的实数根,则a的取值范围为( )
A.a>0B.a>0且a≠2C.a
D.a
且a≠2
【变式6-3】(2020春•沙坪坝区校级月考)若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组
有解且最多有6个整数解,则符合条件的整数a的个数为( )
A.3B.4C.5D.6
【考点7根的判别式(三角形的边)】
【例7】(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x的方程x2﹣4x+k=0的两个根,则k的值为( )
A.3B.4C.3或4D.7
【变式7-1】(2020•铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于( )
A.7B.7或6C.6或﹣7D.6
【变式7-2】(2020春•奉化区期末)已知:
关于x的方程x2﹣(k+2)x+2k=0.
(1)求证:
无论k取任何实数值,方程总有两个实数根.
(2)若等腰三角形ABC的底边长为1,另两边的长恰好是这个方程的两个根,求△ABC的周长.
【变式7-3】(2019秋•雷州市期末)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
【考点8根与系数关系(求代数式的值)】
【方法点拨】根与系数的关系:
若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2
,x1x2
.
【例8】(2019秋•东湖区校级月考)已知x1,x2是方程x2﹣4x+2=0的两根.
(1)填空:
x1+x2= ,x1•x2= ,
,
;
(2)求x1﹣x2的值.
【变式8-1】(2020春•越城区期中)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2+αβ的值为( )
A.10B.9C.7D.5
【变式8-2】(2020•文登区模拟)已知a,b是方程x2+3x﹣5=0的两个实数根,则a2﹣3b+2020的值是( )
A.2016B.2020C.2025D.2034
【变式8-3】(2020春•泰兴市校级期末)设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为 .
【考点9根与系数关系(构造方程求值)】
【例9】(2020春•崇川区期末)已知x1,x2是关于x的一元二次方程x2+3ax﹣x+2a2=1的两个实数根,其满足(3x1﹣x2)(x1﹣3x2)+80=0.求实数a的所有可能值.
【变式9-1】(2020•十堰)已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.
(1)求k的取值范围;
(2)若x13x2+x1x23=24,求k的值.
【变式9-2】(2020•孝感)已知关于x的一元二次方程x2﹣(2k+1)x
k2﹣2=0.
(1)求证:
无论k为何实数,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.
【变式9-3】(2020春•东城区校级期末)已知关于x的一元二次方程ax2+bx+c=0的两个根分别为x1,x2,利用一元二次方程的求根公式x1+x2
,x1x2
可得利用上述结论来解答下列问题:
(1)已知2x2﹣x﹣1=0的两个根为m,n,则m+n= ,mn= ;
(2)若m,n为x2﹣px+q=0的两个根,且m+n=﹣3,mn=4,则p= ,q= ;
(3)已知关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1+x2+2)(x1+x2﹣2)+2x1x2=﹣2,求k的值.
【考点10一元二次方程的应用(传播问题)】
【例10】(2020•海丰县一模)某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.
(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?
(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?
【变式10-1】(2020春•慈溪市期末)2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:
(1)每轮传染中平均每个人传染了几个人?
(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?
【变式10-2】(2020•揭西县模拟)新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.
(1)求这种病毒每轮传播中一个人平均感染多少人?
(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?
【变式10-3】(2020•晋安区一模)卫生部疾病控制专家经过调研提出,如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”.如果某镇有1人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有169人成为新冠肺炎病毒的携带者.
(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?
写出过程.
(2)若不加以控制传染渠道,经过3轮传染,共有多少人成为新冠肺炎病毒的携带者?
【考点11一元二次方程的应用(面积问题)】
【例11】(2020春•溧水区期末)如图,有一块宽为16m的矩形荒地,某公园计划将其分为A、B、C三部分,分别种植不同的植物.若已知A、B地块为正方形,C地块的面积比B地块的面积少40m2,试求该矩形荒地的长.
【变式11-1】(2019春•乳山市期中)如图,某旅游景点要在长、宽分别为10米、6米的矩形水池内部建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的
(每条道路的一侧均与正方形观赏亭的一边在同一直线上),若道路与观赏亭的面积之和是矩形水池面积的
,求道路的宽度.
【变式11-2】(2020春•西湖区期末)有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.
(1)用含有x的代数式表示y.
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成面积为72m2的花圃吗!
如果能,请求出AB的长;如果不能,请说明理由.
【变式11-3】(2019秋•望花区校级月考)一块长30cm,宽12cm的矩形铁皮,
(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为 .
(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?
如果能,请求出盒子的体积;如果不能,请说明理由.
【考点12一元二次方程的应用(增长率问题)】
【例12】(2020春•雨花区校级期末)随着全球疫情的爆发,医疗物资的极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:
(1)求每天增长的百分率;
(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天,现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?
【变式12-1】(2020春•天心区校级期末)甲商品的进价为每件20元,商场确定其售价为每件40元.
(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;
(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?
【变式12-2】(2020•福田区模拟)为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:
(1)求每天增长的百分率;
(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?
【变式12-3】(2020春•越秀区校级月考)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,计划到2020年底,全省5G基站数量将达到6万座,到2022年底,全省5G基站数量将达到17.34万座.
(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率;
(2)若2023年保持前两年5G基站数量的年平均增长率不变,到2023年底,全省5G基站数量能否超过25万座?
【考点13一元二次方程的应用(利润问题)】
【例13】(2020春•蜀山区期末)某水果连锁店将进货价为20元/千克的某种热带水果现在以25元/千克的价格售出,每日能售出40千克.
(1)现在每日的销售利润为 元.
(2)调查表明:
售价在25元/千克~32元/千克范围内,这种热带水果的售价每千克上涨1元,其销售量就减少2千克,若要使每日的销售利润为300元,售价应为多少元/千克?
【变式13-1】(2020春•霍邱县期末)“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:
当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).
(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;
(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.
①求该商品的售价;
②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.
【变式13-2】(2020•沈河区二模)某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:
这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.
(1)降价后,每件衬衫的利润为 元,平均每天的销量为 件;(用含x的式子表示)
(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?
【变式13-3】(2020春•邗江区校级期中)悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?
【考点14一元二次方程的应用(动点问题)】
【例14】(2020春•定远县期末)如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:
(1)经过几秒后,△PBQ的面积等于8cm2?
(2)经过几秒后,P,Q两点间距离是
cm?
【变式14-1】(2020•灌南县一模)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于
cm?
(2)在
(1)中,△PQB的面积能否等于7cm2?
请说明理由.
【变式14-2】(2020•于都县模拟)如图等腰直角三角形ABC中,AB=BC=8,点P从点A开始以每秒2个单位长度的速度沿AB边向点B运动,过点P作PR∥BC、PQ∥AC分别交AC、BC于R、Q.问:
(1)平行四边形PQCR面积能否为7?
如果能,请求出P点运动所需要的时间;如不能,请说明理由;
(2)平行四边形PQCR面积能否为16?
能为20吗?
如果能,请求分别出P点运动所需要的时间;如不能,请说明理由.
【变式14-3】(2019春•西湖区校级月考)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为
cm?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?
专题1.1一元二次方程章末重难点题型
【人教版】
【考点1一元二次方程的概念】
【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并
且未知数的最高次数是2的方程,叫做一元二次方程。
【例1】(2020•富顺县校级一模)下列关于x的方程:
①ax2+bx+c=0;②x2
3=0;③x2﹣4+x5=0;④3x=x2.其中是一元二次方程的有( )
A.1个B.2个C.3个D.4个
【分析】根据一元二次方程的定义逐个判断即可.
【答案】解:
一元二次方程只有④,共1个,
故选:
A.
【点睛】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.
【变式1-1】(2020春•青羊区校级期末)关于x的方程(m+2)x|m|+mx﹣1=0是一元二次方程,则m=( )
A.2或﹣2B.2C.﹣2D.0
【分析】根据一元二次方程的定义可知,最高次数为2且二次项的系数不为0,即|m|=2,且m+2≠0,解出m的值即可.
【答案】解:
由题意可知:
|m|=2,且m+2≠0,
所以m=±2且m≠﹣2.
所以m=2.
故选:
B.
【点睛】本题考查一元二次方程的定义,要注意系数不为0,这是比较容易漏掉的条件.
【变式1-2】(2020春•太湖县期末)若关于x的方程
7=0是一元二次方程,则a= .
【分析】根据一元二次方程的定义得到由此可以求得a的值.
【答案】解:
∵关于x的方程(a﹣1)xa2+1﹣7=0是一元二次方程,
∴a2+1=2,且a﹣1≠0,
解得,a=﹣1.
故答案为:
﹣1.
【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).
【变式1-3】(2020秋•新罗区校级期中)已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 11 人教版 数学 九年级 上册 一元 二次方程 章末重 难点 题型