运用公式法电教教案.docx
- 文档编号:6333808
- 上传时间:2023-01-05
- 格式:DOCX
- 页数:7
- 大小:25.13KB
运用公式法电教教案.docx
《运用公式法电教教案.docx》由会员分享,可在线阅读,更多相关《运用公式法电教教案.docx(7页珍藏版)》请在冰豆网上搜索。
运用公式法电教教案
《运用公式法——平方差公式》
迁安市三初中刘小民
一、背景分析:
苏霍姆林斯基曾说过:
“教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少”。
可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。
(一)教材的地位与作用。
《运用公式法——平方差公式》是北师大版义务教育课程标准实验教科书《数学》八年级(下)第二章分解因式的第三节内容。
分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。
分解因式的变形不仅体现了一种“化归”的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。
探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。
同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。
(二)教学重难点、关键:
1、重点:
掌握公式法中的平方差公式进行分解因式。
2、难点:
灵活地运用公式法或已学过的提公因式法进行分解因式,正确判断因式分解的彻底性。
3、关键:
把握住分解因式的方法如提公因式、公式法等,在对多项式进行分解因式时,首先应考虑提公因式,而且应该提取彻底。
二、目标分析:
参照《数学课程标准》的要求及教材的特点和学生的认知水平与数学思维特征,确定本节课的教学目标如下:
(一)知识与技能目标:
会用平方差公式进行因式分解,并进一步感受整式乘法与分解因式的互逆关系。
(二)过程与方法目标:
经历通过平方差公式逆向运算的推导得出用公式分解因式的方法的过程,发展学生的逆向思维和推理能力。
(三)情感与态度目标:
学生通过自己的实践去领悟、分析、总结技能技巧,树立学习的自信心;通过独立思考和交流讨论发现问题情境中的变形关系,培养学生逆向思考问题的习惯与应用意识,并渗透转化的思想和矛盾的对立统一观点。
三、教学过程:
教学过程
设计意图
(一)创设情境,激发兴趣
活动1:
下把列各式变形为一个式子的平方的形式。
1)121b2=()2;9a4=()20.01x2=()2
2)计算:
(x+5)(x-5)=
(3x+y)(3x-y)=
学起于思,思起于疑,无疑则无知。
教育家托尔斯泰说过:
成功的教学所需要的不是强制,而是唤起学生强烈的求知欲望,激发学生的兴趣。
充分利用媒体教学的直观性,动画显示学生熟悉的剪纸操作,创设问题情境引发学生思考。
使学生把学习当成一种自我需要,为学生营造一种轻松、和谐的学习氛围,从而自然导入新课。
教学过程
设计意图
(二)分析问题,发现新知
问题:
我们知道,(a+b)(a-b)=a2-b2,能否将它反过来得到a2-b2=(a+b)(a-b)呢?
活动3:
(1)观察多项式X2-25,9X2-y2,它们有什么共同特征?
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流。
“有效的教学一定要从学生已经知道了什么开始”。
通过设问,引起全体学生注意,与教师一起进行积极的思维,尽快进入学习状态,所设问题用于复习相关知识与技能进行诊断检测,并针对所存在的缺陷进行补偿教学,为学生学习新知识奠定基础。
(三)合作交流,探索新知
问题:
(1)用语言叙述公式(体现合作)。
(2)公式有什么特点?
(3)公式中的字母a、b可以表示什么?
活动4:
根据你对公式的理解,请举出几个用平方差公式分解的例子,并指出多项式中谁相当于公式中的字母a,谁相当于公式中的字母b?
(尽可能地让学生探索、发现)。
x2-25=x2-52=(x+5)(x-5)
a2-b2=(a+b)(a-b)
9x2-y2=(3x)2-y2=(3x+y)(3x-y)
问题是知识、能力的生长点,富有挑战性的问题能激发原有认知,促使学生主动地进行探索和思考。
通过引导学生对问题情境循序渐进的探讨,让学生猜一猜、想一想,使他们体会了知识的发生、发展过程及怎样从复杂情境中分离、抽象出数学模型,培养了学生从特殊到一般的认知方法。
(四)例题探究,体验新知:
例1填空:
(1)25m2=()2
(2)0.49b2=()2
(3)c2=()2
例2:
把下列各式分解因式
(1)25-16x2
(2)9a2-b2
例3:
把下列各式分解因式
(1)9(m+n)2-(m-n)2
(2)2x3-8x
例4:
计算
(1)6782-3782
(2)852-842
“实践出真知”。
教师通过引导、启发,让学生分4人小组,进行合作学习、讨论、交流,使学生在解决问题的过程中,不断获得成功的体验,增强他们的创新意识和能力。
(五)随堂练习,巩固新知:
1、判断正误:
(1)x2+y2=(x+y)(x+y)()
(2)x2-y2=(x+y)(x-y)()
(3)-x2+y2=(-x+y)(-x+y)()
(4)-x2-y2=-(x+y)(x-y)()
2、把下列各式分解因式:
(1)a2b2-m2
(2)(m-a)2-(n+b)2
(3)x2-(a+b-c)2(4)-16x4+81y4
3、解决
(一)活动2所提出的问题。
“学生思维的水平高低与基本技能是密切相关的,只有通过强化训练,才能提高学生的思维起点。
”1、2题的目的,是巩固新知,对学习中有困难的学生,给予适当的点拨和鼓励,及时发现学生出现的问题。
而第3题,增强了知识的运用性,使学生学以致用,形成能力。
同时,体现数学活动是学生自己构建数学知识的活动,教师起到引导学生进行有效地构建数学知识的活动。
(六)归纳小结,形成体系
1、因式分解与乘法公式的关系。
2、平方差公式的特点。
3、应用平方差公式分解因式的多项式应满足的条件。
4、公式中字母a、b可以是任意数、单项式或多项式。
归纳是一种推理的方法,由一系列具体的事例概括出原理(跟“演绎”相对)。
能使学生的感性认识升华到理性认识,既可锻炼学生由具体到抽象的思维能力,培养学生数学语言的表达能力,严谨的逻辑思维品质。
先引导学生自由发言、互相补充,教师进行修正、精炼阐述。
这样的小结既梳理了知识,又点明了本节课的学习要点,同时使学生对本节知识体系有一个清晰的认识,为下节的学习打下良好基础,起到画龙点晴的作用。
(七)布置作业,反思提炼。
P56习题2.41、2、3
四、教学方法
通过对新课程标准及新教材研究,我认为数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
数学教学应从学生实际出发,创设有利于学生自主学习的问题情境,引导学生通过实践、探索、交流获得知识,形成技能,发展思维,进而达到学会学习,促使学生在教师指导下,生动活泼的、主动和富有个性的学习,在教学活动中,教师应该发挥民主、成为学生数学活动的组织者、引导者和合作者。
而我校所开发的省级课题《课程实施与教学改革——数学思维方法与应用性问题教学的实践研究》中,明确提出预期目标:
(1)培养兴趣,促进思维;
(2)适当分段,分散难点,创造条件让学生乐于思维;(3)在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,培养学生正确的思维方式;(4)重视基本方法和基本解题思想的渗透与训练。
基于以上的理念和目标,我确立了以下的教法和学法。
(一)教学方法
依据本课特点,从学生已有实际经验出发,遵循新课程的理念,根据教学原则,变被动学习为主动学习,使课堂教学生动,有趣,高效。
因此在教学中,以自主探索为主,启发、诱导贯穿教学始终,师生以愉快对话形式共同探索、步步深入,合作交流展开教学,下面我谈谈为什么使用这些方法?
1、自主探索法
苏霍姆林斯基曾说:
“在人的心灵深处,都有一种根深蒂固的超大规模需要,这就是希望感到让自己是一个发现者,研究者。
教师作用是要发现、强化这种探索精神”。
通过巧设问题情境,把要学习的知识,置于具体鲜活的问题情境和嵌于一定活动背景中,使学生对知识多角度的丰富的理解,并能结合自己原有的经验探索新知,从而建构自己所坚持的判断和信念。
如教学中,通过活动1~4,让学生思考、探索判断,在学生迷惑之际,用活动3导航,让学生自己体验猜想,这样不仅点燃学生思维的火花,还激发学生的信心和勇气,自己去分析、自己去解决,使他们体验探索知识奥秘的乐趣,真正体现了“教是为了不教”的教育的最终目标。
2、愉快教学法
“如果我们能做到百分之百的使孩子们兴致勃勃地学习,不仅是孩子们的幸福,并且也是教师的幸福。
这就是当代教育和教育思想家的旋律。
”在教学中利用例题让学生讨论,不失时机地启发学生质疑、问难,让学生有疑必质、有难必问、有感必发,让每个学生积极发言,变“厌学”为“好学”,变“苦学”为“乐学”,变“要我学”为“我要学”,从而让每个学生喜欢数学,把学习作为一种快乐的活动,从中享受学习数学的乐趣。
(二)教学手段
根据教学直观性原则,考虑到学生仍处在以直观、形象思维为主要思维方式的时期。
在教学中采用针对性强的相应措施,创设具体的问题情境,运用电教手段进行必要的动态演示,用活动紧扣对平方差公式的感知,让学生动脑、动手、动口,积极参与教学全过程,逐步由图形的直观,语言的直观向抽象思维过渡,增大教学容量和直观性,提高教学效率和教学质量。
(三)学法指导
当今时代是人类知识和信息量以几何级数递增的时代,现代教育所面临的最严峻的挑战,已不是如何使受教育者学到知识,而是如何使他们“学会学习”。
正如埃德加·富尔所说:
“未来的文盲,不再是不识字的人,而是没有学会怎样学习的人。
”我们古人也说:
“授人以鱼,不如授人以渔”。
因此在教学中我始终把学生推到学习的前沿,引导他们“动眼看、动脑想、动口说、动手练”,让他们在生活中感受数学,在合作交流中理解数学,在实验操作中探索数学,在做数学的过程中,学会数学,充分体现了新课程标准中所强调的自主探索,合作互动,创造性学习这样的有效的学习方式。
五、教学评价
教学评价是教学活动的重要环节,评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展。
同时也是教师反思和改进教学的有力手段。
史密斯一泰勒报告指出:
“评价教育效果,不能只是测定学生的某些能力和特征,而更应评价受教育者向着教育目标成长发展的过程”。
为此这节课我作了如下的评价:
1、评价学生的学习过程
课标指出:
“对学生数学学习过程的评价,包括参与教学活动的程度、自信心、合作交流的意识,以及独立思考的习惯、数学思考的发展水平等方面”。
从这个理论出发,我废除了过去只注重结果的评价。
在本节课上,注意观察学生是否乐于与他人合作,愿意与同伴交流自己的想法?
哪些问题是大多数学生独立思考能达到,哪些问题是学生通过合作交流才能完成;学生思考的是否有条理?
学生的符号表达是否较以前有所发展?
及时发现学生的点滴进步并给予鼓励。
2、评价学生发现问题、解决问题的能力
思维总是从问题开始的,本节课试图让学生在不断解决问题、发现问题中学习。
如活动1~4等实际问题的解决,使他们知识得到掌握,能力得到训练,情感得到体验,各方面都能取得全面和谐的发展。
虽然有的学生不能把每一道题都做完整,但他们积极思考、交流,对这样的学生应给予表扬肯定,帮助他们积极向上。
总之,本课力求达到:
“凡是能由学生提出的问题就不要由教师给出;凡是能由学生解的例题就不要由教师解答:
凡是能由学生完成的表述就不要由教师写”。
本节课自始至终,体现学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
让学生感知数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
教学设计说明
1、本节课根据新课程标准的教育理念和学生实际,结合具体内容,从培养学生学习数学的兴趣入手,采用“问题情景——数学抽象建立数学模型——应用解释”的形式展开,让学生理解数学知识的产生就是人类对实际问题抽象、构建的过程,让学生经历同化新知识,构建新知识意义的过程。
2、设置问题导入新课,从直观的图形及其有关计算出发,帮助学生尽快找到问题的切入点。
3、给学生提供探索和交流的空间。
设置有现实意义的、具有挑战性的问题,激发学生积极思考,引导学生自主探索与合作交流,提高解决问题的能力,发展创新意识和实践能力。
4、内容上挖掘课本资源,设计有弹性,设置了不同层次的学习要求,尊重学生个体差异,满足多样化的学习需要。
实现“不同的人在数学上得到不同的发展”。
5、在学生从事数学活动时,不仅关注学生的学习水平,而且关注他们在活动中表现出来的情感与态度。
比如:
是否主动与同学合作,是否愿意与同学交流自己的看法,是否表现出了兴趣,能否用数学语言表达以及是否尊重他人等进行评价。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运用 公式 电教 教案