专题二立体几何线面垂直面面垂直汇总.docx
- 文档编号:627651
- 上传时间:2022-10-11
- 格式:DOCX
- 页数:13
- 大小:589.32KB
专题二立体几何线面垂直面面垂直汇总.docx
《专题二立体几何线面垂直面面垂直汇总.docx》由会员分享,可在线阅读,更多相关《专题二立体几何线面垂直面面垂直汇总.docx(13页珍藏版)》请在冰豆网上搜索。
专题二立体几何线面垂直面面垂直汇总
专题二:
立体几何---线面垂直、面面垂直
一、知识点
(1)线面垂直性质定理
(2)线面垂直判定定理
(3)面面垂直性质定理
(2)面面垂直判定定理
线面垂直的证明中的找线技巧
通过计算,运用勾股定理寻求线线垂直
1.如图1,在正方体中,为的中点,AC交BD于点O,求证:
平面MBD.
证明:
连结MO,,∵DB⊥,DB⊥AC,,
∴DB⊥平面,而平面∴DB⊥.
设正方体棱长为,则,.
在Rt△中,.∵,∴.∵OM∩DB=O,∴⊥平面MBD.
评注:
在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.
利用面面垂直寻求线面垂直
2.如图2,是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:
BC⊥平面PAC.
证明:
在平面PAC内作AD⊥PC交PC于D.
因为平面PAC⊥平面PBC,且两平面交于PC,
平面PAC,且AD⊥PC,由面面垂直的性质,得AD⊥平面PBC.又∵平面PBC,∴AD⊥BC.
∵PA⊥平面ABC,平面ABC,∴PA⊥BC.
∵AD∩PA=A,∴BC⊥平面PAC.
评注:
已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线面垂直线线垂直.
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:
线线垂直线面垂直面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.
3.如图1所示,ABCD为正方形,⊥平面ABCD,过且垂直于的平面分别交于.求证:
,.
证明:
∵平面ABCD,
∴.∵,∴平面SAB.又∵平面SAB,∴.∵平面AEFG,∴.∴平面SBC.∴.同理可证.
评注:
本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.
4.如图2,在三棱锥A-BCD中,BC=AC,AD=BD,
作BE⊥CD,E为垂足,作AH⊥BE于H.求证:
AH⊥平面BCD.
证明:
取AB的中点F,连结CF,DF.
∵,∴.
∵,∴.
又,∴平面CDF.
∵平面CDF,∴.
又,,
∴平面ABE,.
∵,,,
∴平面BCD.
评注:
本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.
5.如图3,是圆O的直径,C是圆周上一点,平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:
平面AEF⊥平面PBC.
证明:
∵AB是圆O的直径,∴.
∵平面ABC,平面ABC,
∴.∴平面APC.
∵平面PBC,
∴平面APC⊥平面PBC.
∵AE⊥PC,平面APC∩平面PBC=PC,
∴AE⊥平面PBC.
∵平面AEF,∴平面AEF⊥平面PBC.
评注:
证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.
10.如图,在空间四边形SABC中,SA⊥平面ABC,∠ABC=90︒,AN⊥SB于N,AM⊥SC于M。
求证:
①AN⊥BC;②SC⊥平面ANM
分析:
①要证AN⊥BC,转证,BC⊥平面SAB。
②要证SC⊥平面ANM,转证,SC垂直于平面ANM内的两条相交直线,即证SC⊥AM,SC⊥AN。
要证SC⊥AN,转证AN⊥平面SBC,就可以了。
证明:
①∵SA⊥平面ABC
∴SA⊥BC
又∵BC⊥AB,且ABSA=A
∴BC⊥平面SAB
∵AN平面SAB
∴AN⊥BC
②∵AN⊥BC,AN⊥SB,且SBBC=B
∴AN⊥平面SBC
∵SCC平面SBC
∴AN⊥SC
又∵AM⊥SC,且AMAN=A
∴SC⊥平面ANM
[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
图9—40
(1)求证:
AB⊥BC;
(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,
又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,
∴BC⊥平面SAB.∴BC⊥AB.
[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.
求证:
平面MND⊥平面PCD
【证明】取PD中点E,连结EN,EA,则ENCDAM,∴四边形ENMA是平行四边形,∴EA∥MN.
∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.
【注】证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.
[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.
图9—42
求证:
平面MNF⊥平面ENF.
【证明】∵M、N、E是中点,∴∴
∴即MN⊥EN,又NF⊥平面A1C1,∴MN⊥NF,从而MN⊥平面ENF.∵MN平面MNF,
∴平面MNF⊥平面ENF.
4.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.
图9—45
(1)求证:
平面PCE⊥平面PCD;
(2)求点A到平面PCE的距离.
(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,
又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,
∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF面PAD∴CD⊥AF,
又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则GFCD又AECD,
∴GFAE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG平面PEC,
∴平面PEC⊥平面PCD.
(2)【解】由
(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC
∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与△PCD中,∠P为公共角,
而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴,设AD=2,∴PF=,PC=,
∴FH=∴A到平面PEC的距离为.
【拓展练习】
一、备选题
1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.
(1)求证:
平面PAC⊥平面PBC;
(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.
(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径
∴BC⊥AC;
又PA⊥平面ABC,BC平面ABC,
∴BC⊥PA,从而BC⊥平面PAC.
∵BC平面PBC,
∴平面PAC⊥平面PBC.
(2)【解】平面PAC⊥平面ABCD;平面PAC⊥平面PBC;平面PAD⊥平面PBD;平面PAB⊥平面ABCD;平面PAD⊥平面ABCD.
2.ABC—A′B′C′是正三棱柱,底面边长为a,D,E分别是BB′,CC′上的一点,BD=a,EC=a.
(1)求证:
平面ADE⊥平面ACC′A′;
(2)求截面△ADE的面积.
(1)【证明】分别取A′C′、AC的中点M、N,连结MN,
则MN∥A′A∥B′B,
∴B′、M、N、B共面,∵M为A′C′中点,B′C′=B′A′,∴B′M⊥A′C′,又B′M⊥AA′且AA′∩A′C′=A′
∴B′M⊥平面A′ACC′.
设MN交AE于P,
∵CE=AC,∴PN=NA=.
又DB=a,∴PN=BD.
∵PN∥BD,∴PNBD是矩形,于是PD∥BN,BN∥B′M,
∴PD∥B′M.
∵B′M⊥平面ACC′A′,
∴PD⊥平面ACC′A′,而PD平面ADE,
∴平面ADE⊥平面ACC′A′.
(2)【解】∵PD⊥平面ACC′A′,
∴PD⊥AE,而PD=B′M=a,
AE=a.
∴S△ADE=×AE×PD
=×.
二、练习题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 立体几何 垂直 面面 汇总