《概率论与数理统计》课程教学大纲doc.docx
- 文档编号:6102061
- 上传时间:2023-01-03
- 格式:DOCX
- 页数:17
- 大小:21.87KB
《概率论与数理统计》课程教学大纲doc.docx
《《概率论与数理统计》课程教学大纲doc.docx》由会员分享,可在线阅读,更多相关《《概率论与数理统计》课程教学大纲doc.docx(17页珍藏版)》请在冰豆网上搜索。
《概率论与数理统计》课程教学大纲doc
《概率论与数理统计》课程教学大纲
一、课程基本信息
课程代码
BUSI
课程中文名称
概率论与数理统计
课程英文名称
Probabilitytheoryandstatistics
学分/学时
4学分/66学时
适用专业
工商管理、会计、财务管理、电了商务、旅游管理等经济悖理类专业
推荐教材(参考站)
《概率论与数理统计》,袁荫棠编著,中国人民大学出版社,2008年
二、课程简介
《概率论与数理统计》是一门研究随机现象规律性,并在此基础上进行统计推断的学科。
在经济、管理的数据分析、预测与决策中有着广泛的应用。
本课程旨在向2年级的大学生介绍概率论的基本原理和概念、以及利用数据进行知情管理决策的统计推断的基木技术。
课程内容包折概率法则、概率的公理定义、条件概率、事件的独立性、贝叶斯定理、离散型和连续型随机变量概率分布、概率密度函数、分布函数、联合概率分布、随机变量的函数、期望与方差、协方羌与相关系数、二项分布、超几何分布、普哇松分布、指数分布、正态分布、大数定律与中心极限定理、样本分布、包括点估计和区间估计的参数估计、一个总体的均值与方差的假设检验,两个总体的统计推断技术、简单线性冋归和多元线性冋归分析方法。
CourseBriefDescription
ProbabilityTheoryandStatisticsisadisciplineofstatisticalinferencebasedonthefundamentalprinciplesofrandomevents.Ithascomprehensiveapplicationsoneconomicandmanagerialdataanalysis,forecastanddecisionmaking.
Thiscourseisdesignedtointroducesecond・yearstudentstothefundamentalprinciplesandconceptsfromprobabilitytheoryaswellasthebasicstatisticalinferencetechniquesofusingdatatomakeinformedmanagementdecisions.
Topicscoveredincluderulesofprobability,axiomaticdefinitionofprobability,conditionalprobability,independenceofevents,Bayestheorem,discreteandcontinuousrandomvariableprobabilitydistribution,probabilitydensityfunctionandcumulativedistributionfunction,jointprobabilitydistribution,functionofrandomvariables,expectationandvariance,covarianceandcorrelation,binomialdistribution,hypergeometricdistribution,Poissondistribution,exponentialdistribution,normaldistribution,lawofgreatnumbersandthecentrallimittheorem,samplingdistribution,parameterestimationsincludingpointandintervalestimation,hypothesestestingforthemeanandvarianceofapopulation,inferenceproceduresfortwopopulations,simplelinearregression,andmultiplelinearregression.
三、教学目的与基本要求
通过课程的学习,使学生掌握随机现象及其基木规律,学会基木的统计推断方法并能够运用于解决简单的管理分析、决策问题。
具体包括:
L了解随机现象、必然现象、及随机事件的概念;
2能用随机变量描述随机现象;
3掌握一些常见的随机变量的分布;
4掌握随机变量的概率分布律或者概率分布密度函数与分布函数Z间的关系,能用随机变量的概率分布计算冇关事件的概率;
5拿握随机变量的数字特征的概念,并能在已知其分布的条件下计算其数学期望、方差及随机变量间的协方差和相关系数;
6了解大数定律与屮心极限定理的含义,认识大多数随机变量均服从正态分布的真止原因;
7.了解马尔柯夫链的概念以及它在经济问题中的简单应用;
8掌握总体与样木的关系,能根据样木资料计算其分布函数、样本平均数、样本方差等,熟练掌握儿个常见的、重要的样本统计量的分布;
9能根据样本资料对总体的参数进行最大似然估计和区间估计;
1Q能根据样木资料对止态总体的参数的各种假设进行显著性检验;
1L了解对影响总体的各种因索及水平进行统计分析的方法(方差分析);
12能根据样木资料对变量间的相关关系进行显著性检验,并建立冋归数学
模型。
四、教学进度表
章次
题目
教学时数
第一章
随机事件及其概率
10
第二章
随机变量及其分布
8
第三章
随机变量的数字特征
6
第四章
几种重要的分布
8
第五章
大数定律与中心极限定理
4
第六章
马尔柯夫链
0
第七章
样木分布
4
第八章
参数估计
6
第九章
假设检验
6
第十章
方差分析
0
第十一章
回归分析
8
期中考试讲评
2
期末答疑辅导
4
总计
66学时
秋季学期共计18周,国庆假期一周,期中考试2学时,实际授课学时为66学吋(4X112=66)。
五、考核方式和成绩评定办法
1、考核方式:
闭卷考试
Z成绩评定办法:
成绩评定办法:
平时、期中、期末成绩分别为10%20^70%(平时成绩由作业成绩、课堂讨论成绩、小测验成绩等构成)
六、内容提要
第一章随机事件及其概率(教学时数10)
教学目的及要求:
L了解随机现象、必然现象、随机事件、必然事件的概念;
2了解事件的概率的各种定义,并能按各种定义计算事件的概率;
3能熟练运用概率的加法法则和乘法法则;
4熟练掌握独立试验序列型的各种有关概率计算。
本章重点:
L随机事件的概念;
2有关事件概率的计算;
3条件概率的概念及计算;
4全概率公式和贝叶斯公式的运用;
5独立事件的有关概率计算。
本章难点:
L随机事件的概念;
2古典概率的计算;
3全概率公式和贝叶斯公式;
4独立试验序列概型。
主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论相结合的教学组织形式和方法。
本课程是一门实践性很强的基础课,每一章后面安排了大量的习题,供学生检验学习木章的效果,同时也要求学生必须做完课后的大部分习题。
为使学生按时完成作业,及时地弄懂所学的内容,每章安排2学时的习题课或讨论课。
教学内容
第一节随机事件
1、随机事件的概念
Z随机事件与集合
3随机事件间的关系及其运算
第二节概率
1、概率的统计定义
Z概率的古典定义
a几何概率
4计算概率的例题
第三节概率的加法法则
1、狭义的加法法则
a广义的加法法则
第四节条件概率与乘法法则
1、条件概率
z乘法法则
a全概率公式
4贝叶斯公式
第五节独立试验概型
1、事件的独立性
a独立试验序列概型
a贝努里定理
本章基本概念:
随机事件、古典概率、概率的加法法则、条件概率、概率的乘法法则、互斥事件、独立事件。
本章练习题:
作业:
教材习题一
第二章随机变量及其分布(教学时数8)
教学目的及要求:
1、掌握随机变量的概念
2能用一个随机变量或随机向量來描述随机试验的结果
3.拿握随机变量的概率分布律或概率密度函数与其分布函数的关系
4能根据随机变量的分布计算有关随机事件的概率
5了解二元随机变量的联合分布与具边缘分布之间的关系,并能判别两个随机变量是否相互独立
6能熟练计算随机变量函数的分布
本章重点:
1确定随机变量或随机向量的分布
2确定随机变量函数的分布
本章难点:
1.二元随机变量的联合分布与•边缘分布Z间的关系
2条件分布
3连续型随机变量变量函数的分布
4连续型随机变量和的分布
主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论和结合的教学组织形式和方法。
本章安排2学时的习题课或讨论课。
教学内容:
第一节随机变量的概念
第二节随机变量的分布
L离散型随机变量的分布
2随机变量的分布函数
a连续型随机变量的分布
第三节二元随机变量
L多元随机变量的概念及其分布函数
2二元离散型随机变量的联合分布
3二元离散型随机变量的联合分布与边缘分布之间的关系
4条件分布
5二元连续随机变量的联合概率密度函数
6二元连续随机变量的联合概率密度函数与边缘密度函数之间的关系
7.条件密度函数
9随机变量间的相互独立性
第四节随机变量函数的分布
L离散型随机变量函数的分布
2连续型随机变量函数的分布
3随机变量和的分布
本章基本概念:
随机变量、随机变量的分布、分布函数、概率密度函数、联合概率、边际概率。
本章练习题:
作业:
教材习题二
第三章随机变量的数字特征(教学时数6)
教学目的及要求:
L了解数学期望的概念及性质,并能根据随机变量或随机向量的分布熟练计算随机变量的数学期望和条件期望;
2了解方差、协方差的概念和性质,并能根据随机变量或随机向量的分布熟练计算随机变量的方并和协方并;
本章重点:
1随机变量的数学期望和方差的计算
2随机变量函数的数学期望方差的计算
3随机变量的条件期望的计算
4随机变量之间的协方差和相关系数的计算
本章难点:
L连续型随机变量函数的数学期望和方差的计算
2随机变量的独立性
3协方差和相关系数的计算
主要教学方法:
课堂讲授和学生口学相结合、讲授与讨论相结合的教学组织形式和方法。
木章安排2学时的习题课或讨论课。
教学内容:
第一节数学期望
1.离散型随机变量的数学期望
2连续型随机变量的数学期望
第二节数学期望的性质
L数学期望的基本性质
2随机变量函数的数学期望
第三节条件期望
第四节方差、协方差
L方差的概念
2方差的性质
3方差的计算
4协方差的概念及计算
5相关系数的概念及计算
6随机变量的独立性与相关性之间的关系
本章基本概念:
数学期望、方差、标准差、协方差、相关系数、随机变量的独立与相关。
本章练习题:
作业:
教材习题三
第四章几种重要的分布(教学时数8)
教学目的及要求:
L熟记服从几种重要分布的随机变量的概率分布律或概率密度函数
2能熟练计算儿种重要分布的数学期望和方并
3能熟练利用儿种重要分布计算有关事件的概率
4了解指数分布、标准止态分布、克方(力勺分布与伽玛(D分布Z间的关系
5当n很大时,能利用Poisson分布计算二项分布的有关概率本章重点:
1.利用几种重要分布计算有关事件的概率
2几种重耍分布的数学期望和方差的计算
3指数分布、标准正态分布、克方(力J分布与伽玛(D分布之间的关系
4熟练利用标准止态分布函数表计算有关止态分布的随机事件的概率本章难点
指数分布、标准正态分布、克方(力巧分布与伽玛(「)分布Z间的关系主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论相结合的教学组织形式和方法。
本章安排2学时的习题课或讨论课。
教学内容:
第一节二项分布
1.服从二项分布的随机变量的分布律
2服从二项分布的随机变量的数学期望与方差的计算
a服从二项分布的随机变量的最口J能取值
4利用二项分布计算相关事件的概率。
第二节超儿何分布
1.服从超几何分布的随机变量的分布律
2服从超几何分布的随机变量的数学期望与方差的计算
a利用超几何分布计算相关事件的概率
4超几何分布与二项分布的关系
第三节普哇松(Poisson)分布
1.服从普哇松(Poisson)分布的随机变量的分布律
2服从普哇松(Poisson)分布的随机变量的数学期望与方差的计算
a利用普哇松(Poisson)分布计算相关事件的概率
4二项分布与普哇松(Poisson)分布的关系
第四节指数分布
1.服从指数分布的随机变量的概率分布密度函数
2服从指数分布的随机变量的数学期望与方差的计算
a利用指数分布计算相关事件的概率
第五节布
1.服从厂6布的随机变量的概率分布密度函数
2服从「巧》布的随机变量的数学期望与方茅的计算
3厂6布与指数分布、标准正态分布、克方(力?
)分布的关系
第六节正态分布
1.服从止态分彳j的随机变量的概率分彳j密度函数
2服从正态分布的随机变量的数学期與与方差的计算
3般正态分布与标准正态分布的关系
4标准正态分布函数表
5利用正态分布计算相关事件的概率
6二元止态分布、T-分布、布简介
本章基本概念:
各重要分布的分布律或概率密度函数、数字特征
本章练习题:
作业:
教材习题四
第五章大数定律与中心极限定理(教学时数4)
教学目的及要求
L了解切贝谢夫不等式的含义,并能用它佔计一些随机事件的概率
2弄清平均数和频率具有一定的稳定性的真正原因
3了解屮心极限定理的含义,明口描述由多种因素共同作用的现象的随机变量均服从正态分布的原因,并由此熟练计算相关随机事件的概率。
本章重点:
利用标准正态分布的分布函数计算相关随机事件的概率
本章难点:
大数定律和中心极限定理的含义
主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论和结合的教学组织形式和方法。
本章安排2学时的习题课或讨论课。
教学内容:
第一节大数定律的概念
第二节切贝谢夫不等式
L切贝谢夫大数定理
2贝努里大数定理
3辛钦大数定理
第三节中心极限定理
本章基本概念:
频率的稳定性、平均结果的稳定性、概率收敛、屮心极限定理
本章练习题:
作业:
教材习题五
第六章马尔柯夫链(选学或自学内容)
教学目的及要求:
L了解随机过程的概念、马尔柯夫链的概念
2能熟练计算马尔柯夫链的转移矩阵
3了解转移矩阵的性质
4了解马尔柯夫链在经济问题中的简单应用
本章重点:
马尔柯夫链在经济问题屮的简单应用
本章难点:
L马尔柯夫链的转移矩阵的转移矩阵的计算
2转移矩阵的性质
3马尔柯夫链在经济问题屮的简单•应用
主要教学方法:
充分利用教材,学生自学。
教学内容:
第一节随机过程的概念
第二节马尔柯夫链
L马尔柯夫链的定义
2转移概率矩阵及柯尔莫哥夫定理
3转移概率的渐近性质一一极限概率分布
第三节马尔柯夫链的应用举例
1.预测产品在未来期间的市场占冇率可能发生的变化问题
2服务网点的设置问题
3存货论模型
本章基本概念:
随机过程、马尔柯夫链、转移概率矩阵。
本章练习题:
作业:
教材习题六
第七章样本分布(教学时数4)
教学教学目的及要求
1.弄清样本和总体的概念及其相互关系
2能根据样本的原始观测值编制样本分布数列,并由此绘制频率直方图和累计频率直方图或次数密度直方图
3能根据样本观测值利用基本公式或简捷公式计算样本平均数、样本标准差及样木分布函数
4熟记一些常见的样本统计量的分布
本章重点:
L样本平均数和样本标准差的计算
2常见的样本统计量的分布
本章难点:
常见的样本统计量的分布的推导
主要教学方法:
课堂讲授和学生口学和结合、讲授与讨论和结合的教学组织形式和方法。
木章安排2学时的习题课或讨论课。
教学内容:
第一节总体和样本
第二节样木分布函数
L分组数据的统计表和频数直方图
2频率直方图和累计频率直方图
3样本分布函数
第三节样本分布的数字特征
L样本平均数
2样本方差
3样木平均数和样本方差的简算公式
第四节儿个常用统计量的分布
本章基本概念:
总体、样本、简单随机样本、样本均、样木方差、频率直方图、样本均值的分布、统计量。
本章练习题:
作业:
教材习题七
第八章参数估计(教学时数6)教学目的及要求
L了解参数估计的概念
2认识衡量样本统计量优劣的三个标准
3掌握参数估计的两种方法
4熟练掌握最大似然佔计法
5能根据已知选择统计量对止态总体的参数进行区间估计
本章重点:
总体参数的最大似然估计法和区间估计法
本章难点:
L样本统计量的优劣的判断
2正态总体参数的最大似然估计法
a用区间估计正态总体参数时正确选择样木统计量
主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论相结合的教学组织形式和方法。
本章安排2学时的习题课或讨论课。
教学内容:
第一节估计量优劣的标准
L一致估计
2无偏估计
3有效估计
第二节点估计
L矩法
2最大似然估计法
第三节区间估计
1•总体期望值的区间估计
2小样本条件下正态总体方差的区间估计
本章基本概念:
无偏估计、最大似然估计、置信区间。
本章练习题:
作业:
教材习题八
第九章假设检验(教学时数6)
教学目的及要求:
1.了解假设检验的基本概念及基本程序
2了解假设检验屮所要犯的两类错误及其概率
a能正确选择统计量对一个正态总体的期望值和方差进行显著性检验
4能正确选择统计量对两个正态总体的期望值和方差之间的差异进行显著性检验
5了解总体总体分布的假设检验的基本思想及检验的一般程序本章重点:
1.一个正态总体的期望值和方差的显著性检验
2两个止态总体的期望值和方差Z间的差异的显著性检验本章难点:
L样本统计量的选择
2总体分布的检验
主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论相结合的教学组织形式和方法。
本章安排2学时的习题课或讨论课。
教学内容:
第一节假设检验的概念
第二节假设检验中所要犯的两类错误
第三节一个正态总体的假设检验
L已知方差cH,检验假设H():
〃=“o
2未知方差CT?
检验假设矶:
“=“()
3未知期望“,检验假设:
(T2=
4未知期與“,检验假设H。
心5况
第四节两个止态总体的假设检验
1•未知期望检验假设=房
2未知期望检验假设“;
3已知of=a;,检验假设//():
“]=&
第五节总体分布的假设检验
本章基本概念:
假设检验、小概率原理、临界值。
本章练习题:
作业:
教材习题九
第十章方差分析(自学或选学内容)
教学目的及要求:
L了解方差分析的基本思路
2熟练掌握方差分析的基本程序
3能熟练地对单因素试验和双因素试验进行方差分析
本章重点:
对单因素试验和双因素试验进行方差分析
本章难点:
L组间方差和组内方差的计算
2重复试验的双因素分析
主要教学方法:
充分利用教材,学生自学。
教学内容:
第一节单因素方差分析
L方差分析的假设前提
2统计假设
3检验方法
第二节单因索方差分析表
第三节单因素方差分析举例
第四节双I大I素方差分析
L无重复双因素方差分析
2重复试验的双因素分析
本章基本概念:
单因索方差分析、双因索方差分析。
本章练习题:
作业:
教材习题十
第十一章回归分析(教学时数8)
教学目的及要求:
1.了解冋归分析的基本思想
2能熟练地建立一元线性回归方程,并能对两个变量间的线性相关性进行显著性检验
a能将两个变量间的某些非线性关系转化成线性关系,并最终求出它们的回归方程
4能建立多元线性冋归方程,并对其进行线性相关性检验
本章重点:
一元线性回归直线方程的建立及两个变量间的线性相关性进行显著性检验。
本章难点:
多兀线性冋归方程的建立及对冋归方程的显著性检验
主要教学方法:
课堂讲授和学生自学相结合、讲授与讨论和结合的教学组织形式和方法。
本章安排2学时的习题课或讨论课。
教学内容:
第一节回归概念
第二节一元线性冋归方程
1.冋归直线方程
2相关性检验
第三节可线性化的回归方程
L双曲线型
2指数曲线型
3幕函数型
4S曲线型
5对数曲线型
第四节多元线性回归方程(□学或选学内容)
L多元线性回归的数学模型
2最小二乘估计与正规方程
3相关性检验
本章基本概念:
简单线性回归、多元线性回归、总体模型、最小二乘法、回归方程、残差。
本章练习题:
作业:
教材习题十一
七、参考文献
《概率论与数理统计学习与考试指导》,殷秀清袁荫棠,中国人民大学出版社,1999年
执笔人:
吴东、姚建文
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计 概率论 数理统计 课程 教学大纲 doc