高大监测方案.docx
- 文档编号:6091639
- 上传时间:2023-01-03
- 格式:DOCX
- 页数:6
- 大小:24.39KB
高大监测方案.docx
《高大监测方案.docx》由会员分享,可在线阅读,更多相关《高大监测方案.docx(6页珍藏版)》请在冰豆网上搜索。
高大监测方案
南昌地铁车站高大模板支架监测方案
1.工程概况及监测目的
1.1工程概况
33站位于丰和中大道与翠苑路交汇处,沿丰和中大道设置,车站呈南北走向。
该站为地下两层岛式标准车站,采用顺做法施工,其中地下二层为站台层;地下一层为站厅层。
车站主体采用现浇钢筋砼箱型结构型式。
设计起讫里程YDK。
本站线间距为13.5m,站台宽10.5m,有效站台长度为118m,车站净长为185m,标准段净宽17.8m。
总建筑面积为11363.2m2,主体建筑面积为7531.2m2。
车站有效站台中心里程处底板埋深约为16.1m,站中心覆土为3.1m。
车站区间隧道采用盾构法施工,车站南端头井作为盾构始发井,车站北端头作为盾构吊出井。
该站标准段地下二层侧墙厚700mm,标准段地下一层侧墙厚600mm,端头井侧墙厚800mm。
车站底板厚900mm,中板厚400mm,顶板厚800mm,围护墙与内衬墙形成复合墙结构。
车站主体结构北高南低,坡度为2‰。
标准段主体结构设计详见下表1.1:
表1.1翠苑路站主体结构主要尺寸表
结构层
净层高(m)
结构层梁(mm)
结构层板(mm)
中柱(mm)
内衬墙厚(mm)
负一层
(站厅层)
4.75
900×1800
800
1100×700
600
负二层
(站台层)
7.19/6.16
800×1000
400
1100×700
700
xx站位于红谷滩新区丰和南大道临近学府大道处,车站沿丰和南大道设置,车站呈南北走向,为地下二层岛式车站,局部顶板上设置夹层板,其中地下二层为站台层;地下一层为站厅层。
车站主体采用现浇钢筋砼箱型结构型式。
设计起讫里程:
YDK。
本站线间距为17m,站台宽14m,有效站台长度为118m,车站净长为212.9m,标准段净宽21.3m。
总建筑面积为16436m2,主体建筑面积为12713m2。
车站有效站台中心里程处底板埋深约为18.87m,站中心覆土为4.5m。
车站设4个出入口、3组风亭。
车站端头井横断面图见图1-2。
车站采用明挖顺筑法施工,车站围护结构采用地下连续墙+内支撑形式,围护墙与内衬墙形成复合墙结构。
车站南北两端区间隧道采用盾构法施工,车站南端头井作为盾构始发井,车站北端头作为盾构吊出井。
该站为地下两层三跨箱形结构,标准段地下二层侧墙厚700mm,标准段地下一层侧墙厚600mm,端头井侧墙厚800mm。
底板厚1000mm,中板厚400mm,顶板厚900mm(局部400mm),顶板上夹层板厚600mm。
车站主体结构南高北低,坡度为2‰。
标准段主体结构设计详见表1.2:
表1.2xx主体结构主要尺寸表
结构层
净层高(m)
结构层梁(mm)
结构层板(mm)
中柱(mm)
内衬墙厚(mm)
负一层
5.90/4.8
900×1800
900/400
1100×700
600
负二层
7.19/6.16
800×1000
400
1100×700
700
顶板夹层
3.9
800×1500
600
结合本标段2个车站,本工程中需要监测的高支模位置为:
(1)负二层,端头井净高7.19米,最大净跨9.25米,标准段净高6.16米,最大净跨9.2米。
(2)负一层,端头井净高4.8米,最大净跨9.25米,标准段最大净高5.9米,最大净跨9.2米。
(3)顶板夹层仅学府大道东站,净高3.9米,最大跨度9.25米。
(4)附属结构出入口、风亭等。
1.2监测的主要目的
高大模板支撑系统在混凝土浇筑过程中和浇筑后一段时间内,由于受压可能发生一定的沉降和位移,如变化过大可能发生垮塌事故。
为及时反映高支模支撑系统的变化情况,预防事故的发生,需要对支撑系统进行沉降和位移监测。
2.采用的规范和依据
(1)《工程测量规范》(GB50026-2007),国家标准;
(2)《建筑变形测量规范》(JGJ8-2007),国家行业标准;
(3)经评审的高大模板支架方案。
3.监测项目及其预警值、允许值
(1)支架沉降量(顶部):
架高6m以下为5mm;
(2)支架垂直度:
每步架为h/1000及2mm,总高为H/600及20mm;
(3)支架位移(顶部):
架高6m以下为5mm;
(4)若发现异常情况,应立即停止浇筑混凝土施工作业,并报告项目部以便尽快作出处理,情况较严重时应立即撤离人员和设备。
4.监测仪器和精度
工作仪器设备的精度、稳定性直接关系到测量数据的准确性、可靠性,是测量项目能否成功的关键因素之一。
本高支模监测使用仪器设备如下。
序号
监测项目
仪器名称
仪器型号
监测精度
1
支架沉降观测
水准仪
天宝DINI03
1.0mm
2
支架水平位移观测
全站仪
天宝S8(1〞)
1.0mm
5.监测频率
浇筑前观测二次;浇筑时,每隔1小时观测一次;浇筑完成后,前三天每天观测一次,第六天观测一次,监测浇筑段观测次数约10次。
6.监测技术和方法
6.1基准点的布置
6.1.1水平位移监测基准点的布置
基准点的位置,对水平位移监测起到决定性的作用,应布设监测区域以外便于观测、不易破环的地方。
根据现场实际情况,选取远离监测区域约30米以外测量控制点,作为基准点,基准点要周期性复核。
6.1.2沉降监测基准点的布置
根据现场实际情况,选取远离监测区域约20-50米以外结构施工的标高控制点作为基准点,基准点要周期性复核。
6.2监测点的布设
根据经评审的高大模板支架方案,每个监测剖面布设3个支架水平位移监测点和3个支架沉降观测点。
支架监测点布置在支架顶部,监测点一旦确定后,一般情况下不得任意改变,以免造成混乱和增大误差。
6.2.1支架水平位移监测点的布设
水平位移监测点拟采用小反射棱镜或反射片作标志。
在支架立柱上部固定监测标志,并用红漆编号。
布点位置见图6-1。
6.2.2支架沉降监测点的布设
支架沉降监测点一般选在截面积较大的大梁中部,且为汇交梁受力较大的位置。
在最顶上的支架,由施工单位用短钢管横担垂直引下一钢管,钢管上端固定,下端不落地不固定。
再在钢管下端固定一段约1米长的钢尺作为观测尺。
沉降点的布点位置见图6-1。
6.3监测设备与实施方法
6.3.1使用仪器
①天宝S8(1〞)全站仪
②天宝DINI03(0.3mm/km)
6.3.2支架水平位移监测
水平位移的监测方法拟采用极坐标法。
极坐标法:
根据实际情况拟采用极坐标法进行水平位移的监测。
对工作基点的稳定性检查可采用后方角度(距离)交会校核。
极坐标法和后方交会法,外业采用天宝S8(1〞)全站仪进行监测,必须符合规范要求。
监测系统对监测数据进行改正、平差计算,然后生成各种报表和变形曲线、变形速率及变形预报。
极坐标法是利用数学中的极坐标原理,以两个已知点为坐标轴,以其中一个点为极点建立极坐标系;测定观测点到极点的距离,测定观测点与已知坐标轴的角度,计算出观测点的坐标。
6.3.3支架沉降监测
沉降点的观测方法:
在基准点上立标尺作为后视尺,固定在观测点上的钢尺作为前视尺。
用水准仪分别对后视尺和前视尺进行读数,同一个点相邻两期的后尺读数之差减去前尺读数之差即得观测点的沉降量。
7.数据处理与信息返馈
7.1.当次完成的测量内容,及时对数据进行处理,正常情况下第二个工作日提交上一工作日的观测结果。
7.2.观测结果异常时,立即口头向项目部总工办汇报,随后提交书面报告,书面报告加盖公章,做好交接手续。
7.3.监测结果反馈流程
8.人员组成及组织结构
8.1人员组成
①.由南昌地铁xx项目部测量技术人员组成监测班组,共4人,专门负责本监测工程项目的实施。
②.监测班组由南昌地铁2号线3标项目部测量队领导,测量结果向监理单位汇报,发生异常时向监理单位、业主单位汇报。
③.监测班组人员根据工程进度和需要适时进场,人员如下表。
姓名
职称
职务
白桦
助理工程师
项目部测量队员兼监测班组长
张腾
技术员
赵彬
技术员
黄成
测工
注:
以上人员根据工程需要可进行增减调整。
8.2组织结构
南昌地铁2号线3标项目部
测量队
监测班组
9.监测工作计划和措施
9.1我项目部计划监测同种工况前三次浇筑段,按正常工程进度每监测个浇筑段需观测约10次。
9.2每次观测前必须对使用的基准点和工作点进行稳定性检查。
9.3前二次观测的数据是以后各周期观测的起始值,应比以后各周期的观测结果更准确可靠,应采取适当措施提高精度。
9.4观测所使用的仪器设备应该经过法定部门的检定并在有效期内。
9.5各次沉降观测应采用相同观测设备和观测方法,尽量采用相同的水准观测线路。
9.6基本固定的作业人员,基本相同的环境下施测。
9.6监测工程作为现场施工的一个组成部分,现场测量人员必须遵守现场施工人员安全守则。
9.8若支护结构因位移、变形过大而出现险情时,现场测量人员应立即撤离危险区域,并及时甲方和施工方等单位,在不影响测量人员的人身安全的前提下,继续监测情况的发展。
9.9同样工况下施工区段连续3次监测无异常,可不再进行监测,但浇筑后要复测结构尺寸。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高大 监测 方案