Stata门限模型的操作和结果详细解读.docx
- 文档编号:6058777
- 上传时间:2023-01-03
- 格式:DOCX
- 页数:10
- 大小:577.19KB
Stata门限模型的操作和结果详细解读.docx
《Stata门限模型的操作和结果详细解读.docx》由会员分享,可在线阅读,更多相关《Stata门限模型的操作和结果详细解读.docx(10页珍藏版)》请在冰豆网上搜索。
Stata门限模型的操作和结果详细解读
一、门限面板模型概览
如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。
这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。
一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。
但是,这种关联是线性的吗?
在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。
再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。
由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。
这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。
这个效应被称为门槛效应或门限效应。
门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。
作为原因现象的临界值称为门限值。
在上面的例子中,成果和时间存在非线性关系,但是在每个阶段是线性关系。
有些人将这样的模型称为门槛模型,或者门限模型。
如果模型的研究对象包含多个个体多个年度,那么就是门限面板模型。
汉森(BruceE.Hansen)在门限回归模型上做出了很多贡献。
了解门限模型最好的办法,首先就要阅读他的文章。
他的文章很有特点:
条理很清晰,推导过程详细,语言简练,语法不复杂。
有关他的论文、程序、数据可以参考Hansen的个人网站:
http:
//www.ssc.wisc.edu/~bhansen/progs/progs_subject.htm。
Hansen于1996年在《Econometrica》上发表文章《Inferencewhenanuisanceparameterisnotidentifiedunderthenullhypothesis》,提出了时间序列门限自回归模型(TAR)的估计和检验。
之后,他在门限模型上连续追踪,发表了几篇经典文章,尤其是1999年的《Thresholdeffectsinnon-dynamicpanels:
Estimation,testingandinference》,2000年的《Samplesplittingandthresholdestimation》和2004年与他人合作的《InstrumentalVariableEstimationofaThresholdModel》。
在这些文章中,Hansen介绍了包含个体固定效应的静态平衡面板数据门限回归模型,阐述了计量分析方法。
方法方面,首先要通过减去时间均值方程,消除个体固定效应,然后再利用OLS(最小二乘法)进行系数估计。
如果样本数量有限,那么可以使用自举法(Bootstrap)重复抽取样本,提高门限效应的显著性检验效率。
在Hansen(1999)的模型中,解释变量中不能包含内生解释变量,无法扩展应用领域。
Caner和Hansen在2004年解决了这个问题。
他们研究了带有内生变量和一个外生门限变量的面板门限模型。
与静态面板数据门限回归模型有所不同,在含有内生解释变量的面板数据门限回归模型中,需要利用简化型对内生变量进行一定的处理,然后用2SLS(两阶段最小二乘法)或者GMM(广义矩估计)对参数进行估计。
当然,有关门限回归模型的最新研究,还可以参考《InflationandGrowth:
NewEvidenceFromaDynamicPanelThresholdAnalysis》(StephanieKremer,AlexanderBick,DieterNautz,2009)。
二、计量模型的假设、估计和检验
略
三、门限面板模型回归估计stata操作指南——基于王群勇xtptm程序
有关这个程序的有效性,我们不去追究,就认为它是正确的程序。
(一)前期准备
1、拥有一台能联网的电脑;
2、电脑中有能正常运行的Stata程序,最好是Stata/SE12,没有这个程序请自行搜索;
3、下载xtptm.zip文件包(请自行搜索),解压缩,复制到X:
\ProgramFiles\Stata12.0(full)\ado文件夹下,单独使用一个文件夹,最好直接使用xtptm文件夹。
也就是说,stata下面有文件夹ado,ado下面有文件夹xtptm,xtptm下面包含了若干文件;
4、指定门限程序文件夹(每次重新打开stata都需要指定这个路径),输入命令(可以不包含点和空格“.”,直接使用命令):
. cd"D:
\ProgramFiles\Stata12.0(full)\ado\xtptm"
D:
\ProgramFiles(x86)\Stata12_winX86_x64\ado\xtptm
以上路径需要根据自己的实际情况指定;
5、下载相关文件,输入命令:
. finditmoremata
回车,弹出帮助文件,依次将“WebresourcesfromStataandotherusers”下面的11个链接打开,点击相应安装按钮,下载安装。
其中,第六个链接安装结束后会提示安装出现问题,不用管。
因为指定了程序路径(cd那个命令),安装完成后,xtptm文件夹会增加很多文件。
至此,准备工作做完了。
(二)门限回归实例
1、到此【下载数据】。
这个数据包括29个个体(省份),21个年度(1990-2010),是一个平衡面板数据。
将数据复制粘贴到Stata数据库中。
方法是:
菜单栏Data>DataEditor>DataEditor(Edit),粘贴数据,粘贴时选择“第一行设定为变量名”。
然后,在数据界面,点击保存,将数据保存到xtptm文件夹内。
这样以后每次都可以直接打开这个数据文件(仍需要用cd命令指定门限程序的路径)。
关闭数据编辑框,进行下面的操作。
2、设定个体与时间,如果个体名称是字符,还需要先将字符转化为数值:
. encodeprovin,gen(prov) #将字符型的变量provin转换为数值型的变量prov
. xtsetprovyear #设定个体和时间分别由prov和year变量的数据表示
最终数据列表如图所示。
3、执行门限回归,输入如下命令:
. xtptmaggtranslabormarketiae,rx(tax)thrvar(year)iters(1000)trim(0.05)grid(100)regime
(2)
含义:
xtptm——执行门限面板回归估计
agg——被解释变量
trans、labor、market、iae——非核心解释变量(控制变量)
rx(tax)——核心解释变量设定为tax
thrvar(year)——门限变量设定为year
iters(1000)——自举抽样1000次
trim(0.05)——分组子样本异常值去除比例为百分之五
grid(100)——将样本分成100个栅格然后取100个中间参数
regime
(2)——待检验的门限值数量为两个
4、转到【回归结果说明】
4、回归结果说明
这个程序只能绘制第一个门限值的检验图。
命令为:
._matplotLR,colume(12)
#注意:
LR后面没有#号
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Stata 门限 模型 操作 结果 详细 解读