Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldment.docx
- 文档编号:5986641
- 上传时间:2023-01-02
- 格式:DOCX
- 页数:15
- 大小:2.16MB
Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldment.docx
《Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldment.docx》由会员分享,可在线阅读,更多相关《Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldment.docx(15页珍藏版)》请在冰豆网上搜索。
MechanicalpropertiesandstresscorrosioncrackingbehaviourofAZ31magnesiumalloylaserweldment
Mechanicalpropertiesandstresscorrosioncrackingbehaviourof
AZ31magnesiumalloylaserweldments
P.B.SRINIVASAN,S.RIEKEHR,C.BLAWERT,W.DIETZEL,M.KOÇAK
InstituteofMaterialsResearch,GKSS-ForschungszentrumGeesthachtGmbHGeesthachtD-21502,Germany
Received25January2010;accepted7April2010
Abstract:
AnAZ31HPmagnesiumalloywaslaserbeamweldedinautogenousmodewithAZ61fillerusingNd-YAGlasersystem.Microstructuralexaminationrevealedthatthelaserbeamweldmetalsobtainedwithorwithoutfillermaterialhadanaveragegrainsizeofabout12μm.Themicrohardnessandthetensilestrengthoftheweldmentsweresimilartothoseoftheparentalloy.However,thestresscorrosioncracking(SCC)behaviourofboththeweldmentsassessedbyslowstrainratetensile(SSRT)testsinASTMD1384solutionwasfoundtobeslightlyinferiortothatoftheparentalloy.Itwasobservedthatthestresscorrosioncracksoriginatedintheweldmetalandpropagatedthroughtheweldmetal-HAZregionsintheautogenousweldment.Ontheotherhand,intheweldmentobtainedwithAZ61fillermaterial,thecrackinitiationandpropagationwasintheHAZregion.Thelocalizeddamageofthemagnesiumhydroxide/oxidefilmformedonthesurfaceofthespecimensduetotheexposuretothecorrosiveenvironmentduringtheSSRTtestswasfoundtoberesponsiblefortheSCC.
Keywords:
AZ31magnesiumalloy;laserwelding;microstructure;mechanicalproperties;slowstrainratetensiletest;stresscorrosioncracking;fractography
1Introduction
Automobileandaircraftapplicationsdemandlightweightandhighperformancematerials,andwroughtmagnesiumalloysareslowlyreplacingsteelsandaluminiumalloysinthoseindustries[1].Magnesiumalloys,ingeneral,haveexcellentcastabilityandmoderateformability,andhencecomponentsaremadefrombothcastandwroughtMgalloys.Eventhoughthejoiningofmagnesiumalloyscanbeaccomplishedbygastungstenarcwelding[2í4].Recentlylaserbeamwelding(LBW),electronbeamwelding(EBW)andfrictionstirwelding(FSW)processesarewidelyemployedforthejoiningofthesealloys[5í9].ThisisduetoreduceddefectlevelsandconsequenthigherjointefficienciesthatresultfromthecontrolledpowerbeamandFSWprocessing.WhiletheFSWprocessisasolidstateprocessthatdoesnotinvolveanyfillermaterials,theLBWprocesscanbeusedtoproducemagnesiumalloyweldmentswithorwithouttheemploymentofadditionalfillermaterials.Formanyapplications,inadditiontothemechanicalproperties,thecorrosionresistanceofmaterialsmustbetakenintoconsideration.
Magnesiumalloysgenerallyhavebeenregardedas
materialswithapoorcorrosionresistance[10].However,thegeneralcorrosionresistanceofmagnesiumalloyswithcontrolledlevelsofimpuritiesisclaimedtobebetterthanthatofcarbonsteelinatmosphericexposuretestsfor2yearsattheTexasGulfCoast[11].
Thecorrosionbehaviourofmagnesiumalloysissignificantlyinfluencedbytheimpurities,especiallythoseonthesurface[12].Inthecaseofweldments,inadditiontothesurfaceimpurities,thecorrosionbehaviourcanbeinfluencedbythegrainsize,weldmetalcomposition,distributionofmicro-constituentsandresidualstresses,etc.Furthermore,theproblemofstresscorrosioncracking(SCC)isprominentinmagnesiumalloys[13].Theenvironmentallyassistedcrackingofmagnesiumalloysisreportedtooccurduetoeitherthegalvanicallyinducedanodicdissolutionofthematrixpromotedbyamorenoblesecondaryphaseoratomichydrogen[13í15].Researchersreportedbothintergranularandtransgranularmodesofcrackingexistedinmagnesiumalloysandtheirweldments[16í19].ThereareafewpublicationsbyourgroupandotherresearcherswhichaddressthecorrosionandSCCbehaviourofweldmentsobtainedbyGTAW,FSWandautogenousLBW[20í22].Joiningofmagnesiumalloys
byLBWismostlydoneinautogenousmode.Inthis
work,laserbeamweldsfromanAZ31HPmagnesiumalloywereproducedinautogenousmodeandwiththeintroductionofanaluminium-rich(AZ61)fillermaterial.AsthepublishedinformationwaslimitedontheSCCbehaviourlaserbeamweldmentsofmagnesiumalloys,anattemptwasmadetocorrelatethemicrostructure-mechanicalpropertyüSCCbehaviouroftheseweldments.
2Experimental
RolledAZ31HPmagnesiumalloysheetof2.5mminthicknesswithanominalchemicalcompositionofMg-(2.5í3.5)%Al-(0.6í1.4)%Zn-(0.2í0.6)%Mn(massfraction)wasusedinthisexperiment.Weldswereproducedbyjoiningtwopiecesofsize200mm×330mm×2.5mmwithaNd-YAGlasersysteminautogenousmodeandwiththeuseofad1.2mmAZ61wire.Thefollowingoptimizedweldingparameterswereused:
laserpower2.2kW;weldingspeed90mm/s;focusingonsurface;heliumshielding16L/minattopside,40L/minatbottomside.Thewirefeedratewas1.25m/minwhileweldingwithAZ61fillerwire.
Themetallographicspecimens(cross-sections)werepolishedsuccessivelywith500,1200and2500gritemerysheetsfollowedbyfinalpolishingwithcolloidalsilicasolutionandetchedinasolutioncontaining3.5gpicricacid,6.5mLaceticacid,20mLwaterand100mLethanol.Microstructuralexaminationwasperformedusingascanningelectronmicroscope(SEM).Microhardnessevaluationacrosstheweldmentswascarriedoutunderaloadof1Nwithaloadingdwelltimeof20s.
TheSCCsusceptibilityoftheparentalloyandtheweldmentswasassessedbyslowstrainratetensiletests(SSRT)inASTMD1384solutioncontaining148mg/LNa2SO4,165mg/LNaCland138mg/LNaHCO3in1L
distilledwateratanominalstrainrateof10í6sí1
followingtheISOstandard7359üPart7[23].ThegeometryanddimensionsofthespecimensemployedfortheSSRTtestsarepresentedinFig.1.Theweldreinforcementsinthefaceandrootregionsofboththeweldmentspecimenswereremovedbygrindingsuccessivelywith320,500and1200gritemerysheets,andthesamelevelofsurfacefinishwasgiventotheparentspecimensbeforeSSRTtests.ReferenceSSRTtestswereperformedontheparentalloyandweldmentspecimensinairatastrainrateof10í5sí1.TheelongationofthespecimensintheSSRTtests(inairandinASTMsolution)wasmeasuredbyemployingtwolinearvariabledisplacementtransducers(LVDTs).AstheelongationvaluesweremeasuredwiththeLVDTsfittedtothespecimengripsandnotinthegaugesectionofspecimens,itisreferredasapparentstraininthediscussion.TheSSRTtestedspecimenswereexamined
byanopticalmicroscopetoidentifythefracturelocation,andthefailedsurfaceswereinvestigatedbySEMtoassessthenatureoffracture.
Fig.1DimensionsoftensilespecimenusedinSSRTtests(Unit:
mm)
3Resultsanddiscussion
3.1Microstructure
Scanningelectronmicrographsoftheparentalloy,theautogenousweldmetalandtheweldmetalobtainedwithAZ61fillerareshowninFigs.2(a)í(c),respectively.Theparentalloyisanaluminiumleanalloy,thesecondaryphaseȕparticleswereobservedinverysmallquantitiesrandomlydistributedinthematrix.Boththeweldmetalshadafinergrainsize(averagegrainsizeofabout12μm)comparedwiththeparentalloy.Theweldmetalswereobservedtocontainarelativelylargenumberoffineparticlesofsize<1μmspreaduniformlyacrossthematrixandalongthegrainboundaries.ItshouldbepointedoutthatthevolumefractionoftheseparticleswashigherintheweldmetalwithAZ61fillerthanintheautogenousweldmetal.Theformationofsuchparticleswasreportedinlaserbeamandelectronbeamweldmetalsbyotherresearchers[22,24].WhileBOBBYetal[22]reportedtheparticlesasAlrichphaseinanautogenousAZ31laserweldmetal,COELHOandhisco-workers[25]identifiedthemasMg17(Al,Zn)12phasebyusingTEMdiffractionpatternsinyetanotherAZ31magnesiumalloylaserbeamweldmetal.CHIetal[24]alsoreportedtheparticleswereMg17Al12phaseintheEBweldsofAZ31,AZ61andAZ91alloys.TheEDSpointanalysismadeontheparticlesshowedthattheywerericherinAlandZn,whichcorroboratedthereportsofCHIetal[24]andCOELHOetal[25].
3.2Microhardness
Fig.3showsthemicrohardnessdistributionintheweldmentsobtainedwithorwithoutfillermaterial.ThehardnessvalueswereintherangeofHV0.1(70±10)intheentireweldment(parent,HAZandweldmetalregions).NeithertheevolutionofafinegrainedstructurenorthepresenceoftheAl-Znrichparticlesdidinfluencethehardnessoftheweldmetal.Similarobservationsonthehardnessoflaserbeamweldmetalsofmagnesiumalloys
Fig.2SEMimagesofAZ31parentalloy(a),weldmetalobtainedwithoutfiller(b)andweldmetalobtainedwithAZ61filler(c)
Fig.3Microhardnessprofileacrosslaserbeamweldments
werereportedinearlierinvestigations[22,25].
3.3Tensileproperties
TheplotsofstressvsapparentstrainpresentedinFig.4showthatallthethreespecimenshaveanultimatetensilestrengthvaluearound250MPa.Theparentalloyhadregisteredanapparentstrainvalueofabout55%againstavalueofabout46%registeredforthetwo
weldmentspecimens.Aftertensiletests,theweldmentspecimenswereexaminedintheopticalmicroscopetoidentifythefracturelocation.TheopticalmacrographoftheautogenousweldmentspecimenSSRTteste
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldment
链接地址:https://www.bdocx.com/doc/5986641.html