工程测量中的坐标系选择原理与方法.docx
- 文档编号:5972856
- 上传时间:2023-01-02
- 格式:DOCX
- 页数:21
- 大小:112.62KB
工程测量中的坐标系选择原理与方法.docx
《工程测量中的坐标系选择原理与方法.docx》由会员分享,可在线阅读,更多相关《工程测量中的坐标系选择原理与方法.docx(21页珍藏版)》请在冰豆网上搜索。
工程测量中的坐标系选择原理与方法
摘要
摘要:
近几年来,国家大力兴建高速铁路,由于高速铁路对边长投影变形的控制要求很高(2.5cm/km),因而导致长期以来一直使用的三度带高斯投影平面之间坐标系已难以满足高速铁路建设的的精度要求,本文就具有抵偿高程投影面的任意带坐标系原理作出了阐释,具有抵偿高程投影面的任意带坐标系,克服了三度带坐标系在大型工程中精度无法满足要求的局限性,能有效地实现两种长度变形的相互抵偿,从而达到控制变形的目的。
关键词:
高速铁路、抵偿高程面、坐标转换、投影变形、高斯正形投影
Abstract
Abstract:
Inrecentyears,countriesbuildhigh-speedrailway,duetohighspeedrailwayprojectivedeformationcontrolofreviseddemanding(2.5cm/km),andthereforecausehaslongbeenusedwiththreedegreesofgaussianprojectionplanesalreadydifficulttosatisfybetweencoordinatesystemofhigh-speedrailwayconstruction,thisarticletheaccuracyrequirementoftheplaneswithcounterelevationarbitrarymadeinterpretationwithcoordinatesystem,withtheprincipleofanyplaneswithanti-subsidyelevation,overcomethreedegreescoordinatewithcoordinatesysteminlargeengineeringaccuracycan'tsatisfyrequirementslimitation,caneffectivelyachievethetwolengthdeformationofmutualcounter,achievethepurposeofcontrollingdeformation.
keywords:
rapidtransitrailwayCounterelevationsurfaceCoordinatetransformationProjectivedeformationGaussianfounderformprojection
目录
第一章前言1
第二章工程测量中常用坐标系简介2
2.1国家统一的3〫高斯正形投影平面直角坐标系统2
2.2抵偿高程面上的高斯正形投影3°带的平面直角坐标系统3
2.3任意带高斯正形投影的平面直角坐标系统3
2.4具有高程抵偿面的任意带高斯正形投影平面直角坐标系4
第三章具有抵偿高程面的任意带高斯正形平面直角坐标系设计原理5
3.1高斯正形投影5
3.2投影变形及其主要特特征分析6
3.2.1将参考椭球面上的长度归化至高斯平面6
3.2.2将参考椭球面上的长度归化至高斯平面7
3.3设计原理7
3.4工程测量投影面和投影带选择的基本出发点8
第四章实例比较与分析9
第五章总结10
参考文献11
致谢12
附录12
工程测量中的坐标系选择原理与方法
Engineeringmeasurementprincipleandmethodofthecoordinatesystemselection
第一章前言
我国的铁路工程建设,长期以来一直采用国家统一3°带高斯正形投影平面直角坐标系(以下简称3°带坐标系)作为铁路线路工程的施工坐标系。
随着我国铁路建设主要技术标准的显著提高和勘测工艺的变革,3°带坐标系已难以适应铁路工程建设的需要,特别是高速铁路(含200km/h客运专线),对边长投影变形提出了2.5cm/km(1/40000)的控制要求。
因此,在高速铁路可行性研究阶段,结合项目特点,设计选定合理的施工坐标系,有效控制投影变形对工程建设的影响,是保证定测、设计、施工的顺利实施和工程质量的重要前提。
具有抵偿高程面的任意带高斯正形投影平面直角坐标系(以下简称抵偿高程面任意带坐标系),是一种能够灵活解决投影变形对工程建设的影响且相对复杂的坐标系形式。
以下结合对投影变形问题的分析,对具有抵偿高程面任意带坐标系的设计原理及方法进行讨论。
第二章
工程测量中常用坐标系简介
2.1、国家统一的3〫高斯正形投影平面直角坐标系统
有前面的分析可知,长度元素高程归化改正与高斯投影长度改化计算。
通过高程归化改正公式和高斯投影改化公式,可得每千米长度的高程归化改正相对值和边长离中央子午线垂距的长度变形,每千米长度的高程归化改正相对值如表1所示
1:
100000
200
1:
30000
500
1:
12000
1:
64000
300
1:
20000
1000
1:
6000
150
1:
40000
表2-1每千米长度的高程归化改正相对值
10
1:
800000
45
1:
40000
150
1:
3600
20
1:
200000
50
1:
3000
200
1:
2000
30
1:
90000
100
1:
8000
表2-2边长离中央子午线垂距的长度相对变形
当参考椭球面位于观测面下方时,长度的高程归化改正量为负值,而高斯投影改正恒为正值,这两项改正是可以相互抵偿的。
从表1和表2中可以得出:
当观测地面的大地高小于150m,或者是当观测点离中央子午线的垂距不超过45km时,长度的两项改正值各自的影响都可以保证相对值小于1/40000,即长度变形值不大于2.5cm/km,此时,可以直接采用国家统一的3°带高斯正形投影平面直角坐标系统。
当长度变形值大于2.5cm/km时,可依实际情况采用:
投影于抵偿高程面上的高斯正形投影3°带的平面直角坐标系统;高斯正形投影任意带的平面直角坐标系统等。
2.2、抵偿高程面上的高斯正形投影3°带的平面直角坐标系统
在这种坐标系中,仍采用国家3度带高斯投影,但投影的高程面不是参考椭球面,而是依据补偿高斯投影变形而选择的高程参考面。
在这个高程参考面上,长度变形为零。
当采用3度带高斯平面直角坐标系时,由
且
超过允许的精度要求(每公里2.5~10cm)时,我们令
=0,即
=
=0
于是,当
确定时,可得
H=
进而计算出高程参考面。
2.3、任意带高斯正形投影的平面直角坐标系统
在这种坐标系中,仍把地面观测元素归算到参考椭球面上,但投影带的中央子午线不按国家3度带的划分,而是依据能够补偿高程面上归算长度变形而选择的某一子午线作为中央子午线。
同样根据
=0可得y=
即中央子午线的位置。
比如,在某测区相对参考椭球面的高程H=500m,为抵偿地面观测值向参考椭球面上归算的改正,依上式得y=80(km)
既选择与测区相距80km处的子午线作为投影面的中央子午线,以消除或减弱两项改正引起的长度变形。
但在实际应用这种坐标系时,往往是选取过测区边缘,或测区中央,或测区内某一点的子午线作为中央子午线,而不经上述的计算。
2.4、具有高程抵偿面的任意带高斯正形投影平面直角坐标系
在这种坐标系中,往往是指投影的中央子午线选在测区的中央,地面观测元素归算到测区平均高程面上,按高斯正形投影计算平面直角坐标。
通过限制和的大小从消除除或减弱两项改正引起的长度变形。
最佳抵偿任意带坐标系的确定方法。
在大型工程中,由于对测量的长度变形控制很严格,因此大多使用最后一种坐标系作为其施工坐标系。
第三章
具有抵偿高程面的任意带高斯正形平面直角坐标系设计原理
由于具有抵偿高程面的任意带高斯正形平面直角坐标系的应用很广泛,并且本文作者在新建大同至西安铁路客运专线的一个标段实习,对此种坐标系的原理有一定的了解,因此本文着重介绍具有抵偿高程面的任意带高斯正形平面直角坐标系设计原理。
3.1高斯正形投影
著名的德国科学家卡尔弗里德里赫高斯在1820-1830年间在对德国汉诺威三件测量成果进行数据处理时,曾采用由他本人研究的将一条中央子午线长度投影规定为固定比例尺度的椭球正形投影。
可是并没有发表和公布它。
人们只是从他给朋友的部分信件中知道这种投影的结论性投影公式。
高斯投影的理论是在他死后,首先在史来伯与1866年出版的《汉诺威大地测量投影方法的理论》中进行了整理和加工,从而使高斯投影的理论公布于世。
更详细的阐明高斯投影理论并给出实用公式的是有德国测量学家克吕格在他1912年出版的《地球椭球向平面投影》中给出的。
在这部著作中,克吕格对高斯投影进行了比较深入的研究和补充,从而使之在许多国家得以应用。
从此人们将这种投影成为高斯-克吕格投影。
为了方便地实际应用高斯-克吕格投影,德国学者巴乌盖尔在1919年建议使用三度带投影,并把坐标纵轴洗衣500km,在纵坐标前冠以带号,这个投影带是从格林尼治开始起算的。
高斯-克吕格投影得到世界许多测量学家的重视和研究。
其中保加利亚测量学者赫里斯托福的研究工作最具代表性。
他的两部力作1943年《旋转椭球上的高斯-克吕格坐标》及1955年《克拉索夫斯基椭球上的高斯和地理坐标》,在理论及实际上都丰富了高斯-克吕格投影。
现在世界上许多国家都采用高斯-克吕格投影,比如奥地利、德国、希腊、英国、美国、前苏联,我国于1952年正式决定采用高斯-克吕格投影。
高斯投影,等角横轴椭圆柱投影,它是德国测量学家高斯于1825-1830年首先提出的。
实际上,直到1912年,由德国另一位测量学家克吕格推导出实用公式后,这种投影才得到推广,所以该投影又成为高斯-克吕格投影。
想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(磁子午线为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此椭圆柱面展开纪委高斯-克吕格投影。
高斯投影由于是等角投影(即投影后长度无变型)所以其为正形投影的一种,高斯投影具有以下七个特点:
1.中央子午线的投影是一条直线,其长度无变形;
2.其他子午线的投影为凹向中央子午线的曲线;
3.赤道的投影为一条与中央子午线垂直的直线;
4.纬线的投影为凸向迟到的曲线;
5.除中央子午线外,其他线段的投影均有变形,且离中央子午线越远,长度变形越大;、
6.投影后长度无变形,且小范围内的图形保持相似。
7.投影具有对称性,面积有变形。
根据高斯投影的以上特点可知,虽然投影前后的角度无变形,但存在长度变形,而且去中央子午线越远,长度变形越大,长度变形越大对测图、用图和测量计算都是不利的,因此我们通常采用分带的方法控制长度的变形。
3.2投影变形及其主要特特征分析
外业测量所测得的数据的参考面为大地水准面,基准线为铅垂线,而工程图纸所使用的坐标系都为高斯平面直角坐标系,因此外业测量所得到的数据必须经过投影改正才能使用。
这里的投影改正主要有两个步骤:
1、将地面观测的长度归算至参考椭球面上;
2、将参考椭球面上的长度归算至高斯平面上;
3.2.1将地面观测的长度归算至参考椭球面
我们这里假设测量基线的两端已经过垂线偏差改正,则基线平均水准面平行于椭球体面。
此时由于大地水准面与参考椭球面存在高程异常,因此必须加以归算的改正。
如图所示,AB为平均高程水准面上的基线长,以S0表示,现要求其在椭球面上的长度S,由图可知
其中Hm为基线端点平均大地高程;Ra为基线方向法截线曲率半径,将上式展开级数,取至二次项,并考虑到R的值相对于Hm很大,则可得到由高程引起的基线归化改正数公式:
3.2.2将参考椭球面上的长度归化至高斯平面
将椭球面上的大地线描写在高斯投影面上,则变为平均长度。
大地线上各微分弧段的长度比是不同的,但是对于一条三角边来说,由于边长较短,长度比变化实际上是非常非常小的,
可以认为是一个常数,在考虑到公式
(1),可得:
式中,Rm为测距边中点的曲率半径;
Ym为测距边两端点的横坐标平均值;
由于从外业实测数据改化至高斯平面进行了两次长度改正,可得:
当取Rm≈Ra=6371000m时,根据(3)式可计算的每公里投影变形随Ym和Hm变化的情况(见附表一)。
有式
(1)、
(2)、(3)和表一,可一归纳投影变形的主要特征如下:
①地面实测长度归算至参考椭球体面上,总是缩短的,地面点与参考椭球面的高差越大、变形越大。
②椭球面上长度归算至高斯面上,总是增大的,离中央子午线愈远变形愈大。
③由于高程归化投影变形与高斯投影变形符号相反,所以在一定的区域内,两种变形可以相互抵偿。
3.3设计原理
铁路是典型的线性工程,穿行于狭长的带状区域,沿途地形、地貌千变万化,特别是在山岭地区或线路横跨多个国家统一3°带时,边长投影变形很难满足2.5cm/km的要求。
因此,需要通过人为的方法,将中央子午线进行移动并重新选择高程参考面,以达到使两项变形良好抵偿的目的,通过这种方法所设计的坐标系,即为抵偿高程面任意带坐标系。
设重新选定高程参考面的大地高为H,测距边相对于新的高程参考面的高程为ΔH,测距边两端点相对于重新选定中央子午线的横坐标平均值为y,则满足高速铁路对投影变形要求的条件式可近似表示为:
式(4)展开后得:
式中Ra为归算边反响参考椭球面法截弧的曲率半径;
Rm为测距边中点的平均曲率半径。
依据式(5)的约束条件,即可进行抵偿高程面的任意带坐标系的设计。
根据本章所述,想要控制长度变形无外乎两种办法:
1)选择适当的高程投影面,即采用抵偿高程面;
2)尽量使分带的中央子午线位于测区的中央;
3.4工程测量投影面和投影带选择的基本出发点
(1)在满足工程测量上述精度要求的前提下,为使得测量结果一测多用,这时应采用国家统一的3度带高斯平面直角坐标系。
这就是说,在这种情况下,工程测量控制网要同国家测量系统相联系,使两者的测量成果相互利用。
(2)当边长的两次归算投影改正不能满足上述要求时,为保证工程测量结果的直接利用和计算的方便,可以采用任意带的独立高斯平面直角坐标系,归算测量成果的参考面中央子午线可以由现实需要选定。
为此,可采用下面三种手段来实现:
(a):
通过改变H从而选择合适的高程参考面,将抵偿分带投影变形,消除或减弱长度变形;
(b):
通过改变y,从而对中央子午线做适当移动,来抵偿由高程面上的边长归算到参考椭球面上的投影变形,消除或减弱长度变形;
(c):
通过既改变H(选择高程参考面),又改变y(移动中央子午线),来共同抵偿两项改正,消除或减弱长度变形。
第四章
实例比较与分析
(1)在新建大同至西安客运专线铁路工程建设中,存在很明显的高斯任意带投影,但是由于作者所实习的单位并不是设计单位,所以无法查阅到抵偿高程面的相关信息,只是得到了其某标段中央子午线的相关信息如下:
第十一施工系中央子午线经度:
111度54分起始里程:
DK406+500-DK420+000
第十二施工系中央子午线经度:
111度48分起始里程:
DK420+000-终点
这里列出相同点在不同施工系的不同坐标
点号第十一施工系坐标第十二施工系坐标
CPI30134082264.981500335.21824082311.1640509253.4744
CPII30444084744.4868501575.22384084791.9944510490.8961
CPII30454083863.0676501181.22654083910.1529510097.8180
VJM1164085099.9122501692.99934085147.5468510608.3004
VJM1154085530.2656501612.37374085577.8202510527.2233
从以上列出的几个点的点位信息,可以很明显的看到在不同的中央子午线的坐标系下,同一点的两种坐标相差很大。
(2)算例详细数据见附录,此处只列出结果。
37带距离不加改正的计算结果K=1/1578.834714
任意带(中央子午线113度)距离不加改正的计算结果K=1/6228.434567
1/2547.499337
任带(中央子午线113度38秒)距离不加改正的计算结果K=1/7679.708938
38带(中央子午线114度)距离不加改正的计算结果K=1/7184.231768
37带距离加改正的计算结果K=1/9248.810765
由
、
、
、
分析可得:
在都不加改正的情况下,随着坐标中央子午线由113度向114度移动,边长相对精度由低到高再由高到低变化。
在113度38秒达到最高精度,推测,在不加边长改正情况下,若坐标投影中央子午线选在113度38秒附近适当位置,能得到最佳精度,即在不加边长改正的情况下,选的恰当的坐标中央子午线可提高精度。
由
、
分析可得:
当投影中央子午线选择不当导致精度不高时,考虑边长改正后可显著提高精度。
第五章
总结
高速铁路的建设会越来越多,具有抵偿高程面的任意带高斯平面坐标系克服了国家三度带坐标系的不足,能够有效地实现两种长度变形抵偿,可以达到控制变形对修建高速铁路的影响,日后其应用也会越来越多,在山岭地区、横跨多个国家统一三度带及线路纵坡变化比较大的地区的高速铁路或客运专线建设中,抵偿高程面任意带高斯平面直角坐标系具有良好的实用性。
参考文献
(1)翟翊,赵夫来,郝向阳,杨玉海编著。
现代测量学,北京:
测绘出版社,2008.12。
(2)孔祥元,郭际明主编。
控制测量学,第三版。
武汉:
武汉大学出版社,2006.11。
(3)全玉山。
具有抵偿高程面的任意带坐标设计原理与方法,铁道勘察,2005年第四期。
致谢
感谢赵夫来教员在本文写作中所给予的帮助!
附录
双定向附合导线计算
点名
观测角
改正数
方位角
边长
⊿X
Vx
⊿Y
Vy
纵坐标X
横坐标Y
myl
"
3849703.848
58706.110
153.5811
3088.647
zyds
8.5430
-0.18
3846928.506
60061.550
342.5241
655.031
626.258
+0.030
-195.789
0.629
157
342.5759
-0.18
3847554.794
59866.390
145.5040
218.856
-181.107
+0.010
122.875
0.210
100
4.3751
-0.18
3847373.697
59989.475
330.2831
249.236
216.871
+0.012
-122.823
0.239
101
196.4333
-0.18
3847590.580
59866.892
347.1204
166.142
162.014
+0.008
-36.805
0.159
102
186.4432
-0.18
3847752.602
59830.246
353.5636
182.663
181.643
+0.009
-19.273
0.175
103
122.4017
-0.18
3847934.253
59811.148
296.3653
114.862
51.457
+0.005
-102.691
0.110
114
161.3423
-0.18
3847985.716
59708.568
278.1116
266.307
37.927
+0.012
-263.592
0.256
115
185.0053
-0.18
3848023.655
59445.231
283.1209
162.281
37.064
+0.008
-157.992
0.156
116
222.1322
-0.18
3848060.727
59287.395
325.2531
254.710
209.725
+0.012
-144.543
0.245
117
189.1215
-0.18
3848270.463
59143.097
334.3746
487.530
440.510
+0.023
-208.892
0.468
158
133.5612
-0.18
3848710.996
58934.673
288.3358
281.073
mfc
3848800.487
58668.227
a158-mfc=288.3356fb=00.0002
任意带(中央子午线113度)距离不加改正的计算结果
双定向附合导线计算
点名
观测角
改正数
方位角
边长
⊿X
Vx
⊿Y
Vy
纵坐标X
横坐标Y
myl
3849575.082
467164.890
154.3224
3088.552
zyds
8.5430
-0.18
3846786.475
468492.605
343.2654
655.031
627.889
+4.829
-186.605
-0.062
157
342.5759
-0.18
3847419.193
468305.938
146.2453
218.856
-182.321
+1.613
121.066
-0.021
100
4.3751
-0.18
3847238.485
468426.983
331.0244
249.236
218.083
+1.837
-120.659
-0.024
101
196.4333
-0.18
3847458.406
468306.300
347.4617
166.142
162.372
+1.225
-35.191
-0.016
102
186.4432
-0.18
3847622.002
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 测量 中的 坐标系 选择 原理 方法