你好.docx
- 文档编号:5765824
- 上传时间:2023-01-01
- 格式:DOCX
- 页数:10
- 大小:223.93KB
你好.docx
《你好.docx》由会员分享,可在线阅读,更多相关《你好.docx(10页珍藏版)》请在冰豆网上搜索。
你好
NormalStressDistanceforaBeaminPureBending
Subject:
S&SA
StudentNo.:
SH-08-0652G
StudentChineseName:
张晗
StudentName(Pinyin):
ZhangHan
StudentEnglishName:
Vincent
TeacherName:
MarkCaulfield-browne
Date:
4/24/2010
Abstract
Theaimofthisexperimentistomeasurethenormalstressdistributionacrossthecrosssectionofarectangularbeamindifferentpurebendingwhichareproducedbyabendingbeamexperimentaldevice.YJ-4501Astaticdigitalstraingaugesareusedtomeasurethestrainandtheresultscanbereadfromastraingaugeoutputdevice.Themeasuredexperimentalstressvaluesaretocomparedtotheoreticalvaluesandtheerrorcalculated.
Introduction
Whenexternalforceisappliedonobjectmadeofelasticmaterial,therewillbeachangeofsizeandshapeoftheobject.(R1)Strain,representedbytheGreekletterε,isatermusedtomeasurethedeformationorextensionofabodyduetoexternally-appliedforces.(R2)Itcanbeclassifiedasnormalstrainandshearstrain.Normalstrainisgenerallydefinedasthechangeinlengthdividedbytheinitiallength.
ε=ΔL/L
Inthisexperiment,onlynormalstrainwillbemeasured.Stressistheinternalforceassociatedwithstrain.AccordingtotheFigure1.below,itcanfoundthatthereisalinearrelationshipbetweenstressandstrainwhenelasticdeformationhappens.Andtheequationσ=Eεcanbegot,whereEisthematerialpropertythatrepresentsthestiffnessofthematerialcalledYoung'sModulus.
Figure1.
Inengineering,it’simportanttomeasurestrainasitcanrepresentthehardnessofmaterial.Ithelpsengineerstochooseappropriatematerialwhiledesigning.Inthisexperiment,normalstresswillbemeasured.Andthemeasuredstressvaluewillbecomparedtothetheoreticalvaluesandtheerrorcalculated.
Background
Straingaugeisametalstripthatcanbeusedasameasuringelementforphysicalforceifthestressiskeptwithinitselasticlimit.Ifthestripisstretched,itwillbecomeskinnerandlongerleadingtoanincreasingofitsresistance.Onthecontrary,ifitisplacedunderacompressiveforce,itwillbroadenandshortenanditsresistancewilldecrease.(R6)Thusappliedforcecanbeinferredfromitsresistance.
In1856,therelationshipbetweenstrainandresistanceofwireconductorwasfirstreportedbyLordKelvin.Andinearly1930s,bondedresistancestraingaugewasfirstusedtomeasurevibratorystrain.Thenadiscoverythatsmalldiameterwiresmadeofelectricalresistancealloyscouldbebondedtoastructuretomeasuresurfacestrainwasmadein1937.It’sabreakthoughthatfromthenonstraingaugemeasurementswereadoptedforuseinaircraftdevelopmentprogrammes.Lateron,theideaofmakingastraingaugebyetchingthepatternforthegaugefromathinfoilwasdevelopedbySaunders-Roein1952.(R7)
Thetypesofstraingaugematerialsarevariousincludingpiezoresistiveorsemiconductorgauge,carbon-resistivegauge,bonded-metallic-wire,andfoil-resistancegauges.Andthemostcommontypeofstraingaugeisthebonded-wirestraingaugewhichisoftenusedinpressuresensor.(R8)Itlookslikethis:
Figure2
Itsusuallyresistancesrangefrom30Ωto3kΩ.Thisresistancemaychangeonlyafractionofapercentforthefullforcerangeofthegauge.Soaquarter-bridgestraingaugecircuitisdesignedconsideringprecisiondemanding.ThecircuitisshowninFigure3.
Figure3.
Normally,therheostatarmofthebridgeR2issetatavalueequaltothestraingaugeresistancewithnoforceapplied.Toensurethebridgewillbesymmetricallybalancesandthevoltmeterwillindicatezerovoltswhichrepresentingnoforceonthestraingauge,R1andR3aresetequaltoeachother.Whenthereisaforceappliedonthestraingaugemakingiteithercompressedortended,itsresistancewilldecreaseorincrease.Asaresult,itwillproduceachangeinthevoltmeterwhichhastherelationwithappliedforce.
Theory
AstraightbarofhomogeneousmaterialissymmetricalaboutY-Yasthefollowingfigureshows.
Figure4.
Assumethatthetraverseplanesectionsremainplaneandnormaltothelongitudinalfibresafterbending.Ifthebarissubjectedtoamomentatoneendandanequalbutoppositemomentattheotherend,theveryclosesectionABandCDwillnolongerbeparallel.ACwillhaveextendedtoA'C'andBDwillhavecompressedtoB'D'astheFigure5.shows.
Figure5.
ThelineEFwillbelocatedsuchthatitwillnotchangeitslength. ThissurfaceiscalledneutralsurfaceanditsintersectionwithZ-Ziscalledtheneutralaxis.ThedevelopmentlinesofA'B'andC'D'intersectatapointowithanangleofθradiansandtheradiusofthecurveE'F'=R.Ify(E'G')isthedistanceofanylayer(H'G')originallyparalleltoEF.Thentwoequationscanbegot
H'G'/E'F'=(R+y)θ/Rθ=(R+y)/REq.1
AndthestrainεatlayerH'G'is
ε=(H'G'-HG)/HG=(H'G'-HG)/EF=[(R+y)θ-Rθ]/Rθ=y/REq.2
Theacceptedrelationshipbetweenstressandstrainisσ=Eε.(Eiselasticmodulus)
Therefore
σ=E.ε=E.y/REq.3
σ/E=y/REq.4
Asthebeamisinstaticequilibriumandisonlysubjecttomoments,theforcesacrossthesection(AB)areentirelylongitudinalandthetotalcompressiveforcesmustbalancethetotaltensileforces. Sotheinternalcoupleresultingfromthesumof(σ.dA.y)overthewholesectionmustequaltheexternallyappliedmoment
Theforceoneachareaelement=σ.&A=σ.z&y.Eq.5
Theresultingmoment=y.σ.&A=y.σ.z&y.Eq.6
ThetotalmomentM=∑(y.σ.&A)=∑(y.σ.z&y.)Eq.7
Usingσ=E.y/R
M=E/R.∑(y2.&A)=E/R∑(y2.z&y.)Eq.8
∑(y2.&A)istheMomentofInertiaofthecrosssection.
Fromtheabovethefollowingimportantsimplebeambendingrelationshipresults
Eq.9(R9)
Equipment
1.Abendingbeamexperimentaldevice
Itisusedtoproduceaforceappliedonthebeam.
2.YJ-4501Astaticdigitalstraingauge
Itisusedtomeasurethestrain.
3.Astraingaugeoutputdevice
Itisusedtodisplaytheresultsofstrain.
ExperimentalProcedure
1.Setaloadof0.5KNonthebeam.
2.Resetthestraingaugeoutputdevicetomakestraingaugereadingstozero
3.Increasetheloadby1KNandrecordthereading.
4.Repeatthisforatotal4setsofstraingauges.(1KN,2KN,3KN,4KN
Results
Table1.Themeasureddata
StrainGauge
DistanceFromNeutralAxis(mm)
StrainGaugeReadingsForAppliedLoad(uε)
1KN
2KN
3KN
4KN
1
y1=0
0
0
0
0
2
y2=10
-37
-73
-110
-146
3
y3=-10
36
71
107
141
4
y4=15
-55
-109
-163
-216
5
y5=-15
56
109
162
215
6
y6=20
-72
-144
-215
-286
7
y7=-20
74
146
218
288
Thetableshowsthereadingdatarecordedfromtheexperiment.Asσ=Eε,experimentalstressesfordifferentloadscanbegot.
Table2.Experimentaldata(106Pa)
1KN
2KN
3KN
4KN
Stress
0
0
0
0
-7.77
-15.33
-23.1
-30.66
7.56
14.91
22.47
29.61
-11.55
-22.89
-34.23
-45.36
11.76
22.89
34.02
45.15
-15.12
-30.24
-45.15
-60.06
15.54
30.66
45.78
60.48
I=bh3/12=0.02x(0.04)3/12=32/3x10-8m4
M=(F/2).C,whereC=150mm.SoM1=75N.mM2=150N.mM3=225N.mM4=300N.m
σ=(M/I)y
Table3.Theoreticalstress(106Pa)
1KN
2KN
3KN
4KN
Stress
0
0
0
0
-7.03
-14.06
-21.09
-28.13
7.03
14.06
21.09
28.13
-10.55
-21.09
-31.64
-42.19
10.55
21.09
31.64
42.19
-14.06
-28.13
-42.19
-56.25
14.06
28.13
42.19
56.25
Accordingtotheequationsabove,theoreticalstressescanbecalculated.
Figure6.
Figure6.showsthediagramofstressdistributionagainstdistancefromtheneutralaxisforexperimentalandtheoreticalvalueswithaload1KN.Theequationforthetheoreticalvalueis
y=-1.42x,andtheequationfortheexperimentalvalueisy=-1.3x
Figure7.
Figure7.showsthediagramofstressdistributionagainstdistancefromtheneutralaxisforexperimentalandtheoreticalvalueswithaload2KN.Theequationforthetheoreticalvalueis
y=-0.71x,andtheequationfortheexperimentalvalueisy=-0.66x
Figure8.
Figure8.showsthediagramofstressdistributionagainstdistancefromtheneutralaxisforexperimentalandtheoreticalvalueswithaload3KN.Theequationforthetheoreticalvalueis
y=-0.47x,andtheequationfortheexperimentalvalueisy=-0.44x
Figure9.
Figure9.showsthediagramofstressdistributionagainstdistancefromtheneutralaxisforexperimentalandtheoreticalvalueswithaload4KN.Theequationforthetheoreticalvalueis
y=-0.36x,andtheequationfortheexperimentalvalueisy=-0.33x
Discussion
Byusingthebendingbeamtestingdevicetoproducealoadonthebeam,strainsfordifferentbendingmomentscanbegot.Accordingtotheequationσ=E.ε,theexperimentalnormalstressdistributionacrossthecrosssectionofarectangularbeamcanbecalculated.Also,accordingtotheequationσ=(M/I)y,thetheoreticalvaluescanbeobtained.
Comparethetheoreticalvalueswithexperimentalvalues,the%errorscanbecalculatedout.Heretheslopeofthelinerepresentingthedeformabilitywillbemadeasthecomparisonobject.
The%errorforload1KN
%error=
=8.45%
The%errorforload2KN
%error=
=7.04%
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 你好