自动控制原理习题.docx
- 文档编号:5672516
- 上传时间:2022-12-31
- 格式:DOCX
- 页数:35
- 大小:628.57KB
自动控制原理习题.docx
《自动控制原理习题.docx》由会员分享,可在线阅读,更多相关《自动控制原理习题.docx(35页珍藏版)》请在冰豆网上搜索。
自动控制原理习题
自动控制原理》习题
1有一水位控制装置如图所示。
试分析它的控制原理,指出它是开环控制系统闭环控制系统?
说出它的被控量,输入量及扰动量是什么?
绘制出其系统图。
2某生产机械的恒速控制系统原理如图所示。
系统中除速度反馈外,还设置了电流正反馈以补偿负载变化的影响。
试标出各点信号的正负号并画出框图。
3图示为温度控制系统的原理图。
指出系统的输入量和被控量,并画出系统框图
4.自动驾驶器用控制系统将汽车的速度限制在允许范围内。
画出方块图说明此反馈系统。
5.双输入控制系统的一个常见例子是由冷热两个阀门的家用沐浴器。
目标是同时控制水温和流量,画出此闭环系统的方块图,你愿意让别人给你开环控制的沐浴器吗?
6.开环控制系统和闭环控制系统各有什么优缺点?
7.反馈控制系统的动态特性有哪几种类型?
生产过程希望的动态过程特性是什么?
习题2
1试分别写出图示各无源网络的传递函数
习题1图
2求图示各机械运动系统的传递函数。
(1)求图a的=?
(2)求图b的=?
(3)求图c的=?
习题2图
3试分别写出图中各有源网络的传递函数U2(s)/U1(s)
习题3图
图中,u为控制电
为电动机的输出转矩。
线性。
设在某平衡状态附
N为电动机的转矩。
由图可T与n、u呈非
4交流伺服电动机的原理线路和转矩-转速特性曲线如图所示压.T
近用增量化表示的转矩与转速、控制电压关系方程为
kn、kc为与平衡状态有关的值,可由转矩-转速特性曲线求得。
设折合到电动机的总转动惯量为J,粘滞摩擦系数为f,略去其他负载
力矩,试写出交流伺服电动机的方程式并求输入
为uc,输出为转角θ和转速为n时交流伺服电动
机的传递函数。
习题4图
5图示一个转速控制系统,输入量是电压V,输出量是负载的转速,画出系统的结构图,并写出其输入输出间的数
习题5图
6已知一系统由如下方程组组成,试绘制系统框图,求出闭环传递函数
7系统的微分方程组如下:
其中K0,K1,K2,T均为正常数。
试建立系统结构图,并求传递函数及C(s)/N2(s)。
C(s)/R(s),C(s)/N1(s)
8试简化图中各系统结构图,并求传递函数C(s)/R(s)
习题8图
试用梅逊公式求解习8图所示系统的传递函数
9题C(s)/R(s)。
10
题
11已知系统结构图如习题
下输出C(s)的表达式。
11图所示,试写出系统在输入
R(s)及扰N(s)同时作用动
习题11图
12图所示,试将其转换
12已知系统结构如习题成信号流图,并求出C(s)/R(s)
习题12图
13图所示,试求C(s)/R(s)
13系统的信号流图如习题
习题13图
14习题14图是一个模拟调节器的电路示意图。
(a)写出输入ur与输出uc之间的微分方程;(b)建立该调节器的结构图;
(c)求闭环传递函数Uc(s)/Ur(s)。
15某弹簧的力-位移特性曲线如习题17图所示。
在仅存在小扰动的情况下,当工作点分别为
x0=-1.2、0、2.5时,试计算弹簧在工作点附近的弹性系数。
习题15图
16试求习题
16图所示结构图的传递函数C(s)/R(s)
习16图
17已知系统结构图如习题
C2(s)/R2(s)。
17图所示,求传递函数
C1(s)/R1(s),C2(s)/R1(s),
C1(s)/R2(s),
习题17
18放大器可能存在死区,在近似线性工作区,可
其工作特性曲线如习题18图所示
以用3次函数y=ax3来近似描述放大器的输入
x=0.6时,试选择
-输出特性。
当工作点为
a
的合适取值,并确定放大器的线性近似模型。
习题18图习题3
1一单位反馈系统的开环传递函数为
1GK(s)s(s1)
%,ts,tp②输入量为单位
求①系统的单位阶跃响应及动态性能指标
脉冲函数时系统
的输出响应。
2设控制系统闭环传递函数为
试在S平面上绘出满足下述要求的系统特征方程式根可能位于的区域
(a)1>≥0.707,n≥2
(b)0.5≥>0,4≥n≥2
(c)0.707≥>0.5,n≤2
3一单位反馈系统的开环传递函数为
2
Gk(s)=ωn2/s(s+2ξωn)
已知系统的r(t)=1
(1),误差时间函数为
e(t)=1.4e
-1.7t
-0.4
-3.74t
求系统的阻尼比的温态误差。
自然振荡角耗率ωn、系统的闭环传递函数及系统
4已知二阶系统的闭环传递函数为
确定在下述参数时的闭环极点,并求系统的单位阶跃响应曲线和相应的性能指标
(a)=2,n=5;
b)1.2,n=5
(c)当≥1.5时,说明是否可忽略距离原点较远的极点及理由
单位反馈系统的开环传递函数为
a)求系统在单位阶跃输入信号
e(t);
r(t)=1(t)作用下的误差函数
(b)是否可以用拉普拉斯变换的终值定理求系统的稳态误差,为什么
6单位反馈系统的开环传递函数为
(a)当K=1时,求系统在r(t)=1(t)作用下的稳态误差;
(b)当r(t)=1(t)时,为使稳态误差ess=0.6,试确定K值
7已知单位反馈系统闭环传递函数为
(a)在单位斜坡输入时,确定使稳态误差为零的参数b0、b1应满足的条件;
(b)在(a)求得的参数b0、b1下,求单位抛物线输入时,系统的稳态误差。
8系统结构图如习题8图所示。
(a)当r(t)=t,n(t)=t时,试求系统总稳态误差;
(b)当r(t)=1(t),n(t)=0时,试求p、tp。
习题8图
9设单位反馈控制系统的开环传递函数为
试求当输入信号r(t)=1+2t+t时,系统的稳态误差。
10有闭环系统的特征方程式如下,试用劳斯判据判定系统的稳定性,并
说明特征根在复平面上的分布。
32
S3+20s2+4s+50=0
S4+2s3+6s2+8s=0
65432
S6+3s5+9s4+18s3+22s2+12s+12=0
11某控制系统如图3-47所示。
其中控制器采用增益为Kp的比例控制器,即Gc(s)=Kp,试确定使系统稳定的Kp值范围。
习题11图
12某控制系统的开环传递函数为
试确定能使闭环系统稳定的参数K、T的取值范围
13已知某系统的结构与参数如习题13图所示。
(a)当输入R(s)=1/s,N(s)=0时,试求系统的瞬态响应;
(b)当输入R(s)=0,N(s)=A/s时,试分析干扰变化对系统的影响
习题13图
14已知某系统的结构图如习题
14图所示,其中系统的时间常1=10秒2=50数为和秒,
K=3。
试求R(s)从1/s变化到2/s,且N(s)=1/s时系统的瞬态响应,并求系统此时的稳态误差ess,其中E(s)=R(s)-C(s)。
习题14图
15已知系统结构图如习题15图所示
a)求K=3,r(t)=t时的稳态误差ess
(b)如果欲使到,为什么?
ess≤0.01,试问是否可以通过改变K值达
习题15图
16系统的结构图如习题16图所示,其中e=r-c,K、T1、T2均大于零
(a)当=1时系统是几型的?
(b)如果r(t)为单位阶跃函数,试选择使系统的稳态误差为零。
17系统结构图如习题
习题16图
17图所示,其中e=r-c,K1、T均大于零
a)当K2=0时系统是几型的?
b)如果r(t)为单位斜坡函数,试选择K2使系统的稳态误差为零
习题17图
18设单位反馈系统的开环传递函数为
若要求闭环特征方程根的实部均小于-1,试问K应在什么范围取值?
如果要求实部均小于2,情况又如何?
19
(如超调量、调整时间等)
某系统的闭环传递函数为
20某闭环系统的结构图如习题
试分析零点-3和极点-8对系统瞬态性能的影响。
20图所示,其中分别0,0.05,0.1和0.5
(a)分别计算系统的单位阶跃响应,并画出相应的响应曲线。
在此基础上,求出系统的超调量、上升时间和调整时间;
(b)讨论对系统响应的影响,并比较开环零点-1/与闭环极点的位置关系
习题20图
21
某闭环系统的结构图如习题
21图所示,其中分别0,0.5,2和5。
(基础上,
a)分别计算系统的单位阶跃响应,并画出相应的响应曲线。
在此
求出系统的超调量、上升时间和调整时间;
b)讨论对系统响应的影响,并比较开环极点-1/与闭环极点的位置关系。
习题21图
22某闭环系统的结构图如习题22图所示,其控制器的零点可变。
(a)分别计算a=0和a≠0时系统对阶跃输入的稳态误差;
(b)画出a=0,10和100这3中情况下系统对阶跃干扰的响应曲线,并在比较的基础上,从a的3个取值中选择最佳值。
习题22图
23电枢控制直流电动机的结构图如23图所
习题示。
(a)试计算系统对斜坡r(t)=t的稳态误差,其Km=10,Kb=0.05,K为待定参输入中数。
如果要求稳态误差等于1,试
确定K的取值;
(b)画出系统在0 习题23图 24试选择K1和K2的值,使图3-64所示系统阶跃响应的峰值时间为0.5秒,超调量可以忽略不计(即0.5%<超调量<2.0%)。 习题24图 25控制系统的结构图如习 题25图所示。 (a)确定该闭环系统2阶近似模 的型; (b)应用2阶近似模型,选择增益K的取值,使系统对阶跃输入的超调量小于15%, 习题25图 26设单位反馈系统的开环传递函数分别为①Gk(s)=K(s+1)/s(s-1)(s+5) ②Gk(s)=K/s(s-1)(s+5) 试确定分别使闭环系统稳定的开环增益的取值范围 习题4 1设开环系统的零、极点在s平面上的分布图如下图所示,试绘制相应的根轨迹草图 题1图 2已知系统的特征方程为 ⑴ ⑵ ⑶ 试绘制以为参数的根轨迹图。 3设单位反馈系统的开环传递函数 (1)试绘制系统根轨迹大致图形,并分析系统的稳定性。 (2)若增加一个零点z=-1,试问根轨迹图有何变化,对系统稳定性有何影响 4已知单位负反馈系统的开环传递函数 试角频用率根轨ω迹n法=2来时确的定使闭环主导极点的阻尼比取值。 ζ=0.5和自然 5设负反馈系统的开环传递函数为 ⑴作出系统准确的根轨迹; ⑵确定使系统临界稳定的开环增益;⑶确定与系统临界阻尼比相应的开环增益 6单位负反馈系统的开环传递函数为 试绘制系统的根轨迹图,并确定产生纯虚根时的z值和值 7设控制系统的开环传递函数如下,试画出参数b从零变到无穷时的根轨迹图 8设控制系统的开环传递函数为 试画出系统分别为正反馈和负反馈时的根轨迹图,并分析它们的稳定性。 9已知正反馈系统的开环传递函数为 试绘制系统的根轨迹图 10非最小相位系统的特征方程为 试绘制该系统的根轨迹图。 11已知非最小相位负反馈系统的开环传递函数为 试绘制该系统的根轨迹图。 12反馈系统的开环传递函数为 试用根轨迹法确定系统无超调响应时的开环增益 13设负反馈控制系统的开环传递函数为 证明系统的根轨迹含有圆弧的分支 14如习题14图所示控制系统 ⑴画出系统的根轨迹图; ⑵求系统输出c(t)无振荡分量时的闭环传递函数 习题14图 15设负反馈系统的开环传递函数为 试绘制系统根轨迹的大致图形。 若系统 ⑴增加一个z=-5的零点; ⑵增加一个z=-2.5的零点; ⑶增加一个z=-0.5的零点。 试绘制增加零点后系统的根轨迹,并分析增加开环零点后根轨迹的变化规律和对系统性能的影响。 16已知负反馈系统的传递函数为 ⑴利用Matlab有关函数作出0≤a<1时系统的根轨迹和单位阶跃响应曲线; ⑵讨论a值变化对系统动态性能及稳定性的影响(0≤a<1=; 17设单位反馈系统的开环传递函数 18%的要 若要求系统的增益为=90,试求a为何值才能满足闭环系统最大超调量% 求? 习题5 1若系统单位阶跃响应 -4t-9t y(t)=1- t>= 1.8e +0.8e0 试求系统频率特性。 2已知单位反馈系统的开环传递函数如下,试绘制其开环频率特性的极坐标图 1) 2) 3) 4) 7) 8) 9) 10) 3 已知某系统的开环传递函数为 应用奈氏判据判断闭环系统的稳定性。 4设系统的开环传递函数为 试画出下面两种情况下系统的极坐标图 5设一反馈控制系统的特征方程为 应用奈氏判据确定使闭环系统稳定的K的数值,再用劳斯判据检验得到的结果 6绘出下列传递函数的幅相特性 7设系统的开环对数幅频特性的分段直线近似表示如图所示(设为最小线性相位系统)。 试写出系统的开环传递函数。 8设系统的开环幅相频率特性如图所示。 图中,开环极点在右半 试计算在右半s平面的闭环极点数。 试判断闭环系统的稳定性。 p表示系统 s平面上的数目。 若闭环不稳定, 9 画出下列开环传递函数的幅相特性,并判断其闭环系统的稳定性。 10已知系统开环传递函数分别为 试绘制伯德图,求相位裕量,并判断闭环系统的稳定性。 11设单位反馈系统的开环传递函数为 当输入信号r(t)=5sin2w时,求系统的稳态误差 12单位反馈系统的开环传递函数为 Mp=1.4的K值。 11=20db的K值。 GM r(wc)=60时的值。 (1) (2) 3) 试用频域和时域关系求系统的超调量δ%及调节时间ts. 13设一单位反馈控制系统的开环传递函数 确定使系统的谐振峰值确定使系统的幅值裕度 确定使系统的相角裕 习题6 1单位反馈系统的的开环频率特性为 1)串联相位超前校 为使系统具有的相角裕度,试确定: ( 正装置; (2)串联相位 滞后校正装置;(3)串联相位滞后-超前校正装置 2设单位反馈系统的开环传递函数为 为使系统具有如下性能指标: 加速度误差系数谐振峰值谐振频率。 试用期望对数频率法确定校正装置的形式和特性。 3设单位反馈系统的开环传递函数为 设计一校正装置,使静态速度误差系数,并使闭环主导极点位于s=-2±j23 4设单位反馈系统的开环传递函数为 1)如果要求系统在单位阶跃输入作用下的超调量,试确定K值 (2)根据所确定的单位阶跃输入下的调节时间 态速度误差系数。 K值,求出系统在 ,以及静 3) 设计一串联校正装置,使系统 减少两倍以上 5已知单位反馈系统开环传递函数为 设计校正网络,使 6由实验测得单位反馈二阶系统的单位阶跃响应如习题6图所示 要求: (1)绘制系统的方框图,并标出参数值; 2)系统单位阶跃响应的超调量,峰值时间设计适当的 校正环节并画出校正后系统的方框图。 7设原系统的开环传递函数为 要求校正后系统的相角裕度,幅值裕度Kg=6分贝 (1)试求串联超前校正装置; (2)试求串联滞后校正装置 (3)比较以上两种校正方式的特点,得出何结论。 8设控制系统的开环频率特性为 要使系统的相角裕度,系统的加速度误差系数Ka=10,试用频率法设计串联超 前校正装置。 9反馈控制系统的开环传递函数为 采用串联超前校正,使系统的相角裕度,在单位斜坡输入下的稳态误差为ess=0.1,系统的剪切频率小于7.5弧度/秒。 10设单位反馈控制系统的开环传递函数为 若使系统的相角裕度,速度误差系数Kv=8,试设计串联滞后校正装置 11系统如习题11图所示,其中R1,R2和C组成校正网络。 要求校正后系统的稳态误差为ess=0.01,相角裕度r≥60度,试确定K,R1,R2和C的参数。 12反馈系统的结构图如习题12图所示,为保证系统有45度的相角裕度,求电容c为多少? 13已知单位反馈控制系统的开环传递函数为 试设计串联校正环节,使系统的相角裕度,剪切频率 14某单位反馈系统开环传递函数为 现要求,试确定串联校正装置。 15设控制系统的开环传递函数为 Mr=1.4,谐振频率 ,试设 要求校正后系统的相对谐振峰值 计串联校正环 节。 16设控制系统的开环传递函数为 若使闭环系统的谐振峰值 度误差系数 Mr=1.25,谐振频率,系统的速 秒-1,试设计滞后-超前校正装置 17控制系统的开环传递函数为 要使系统的相角裕度,单位斜坡输入时系统的稳态误差,试用频率法设计串联滞后-超前校正网络。 18设I型系统的开环传递函数为 试用希望特性法确定使系统达到下列性能指标的校正装置: 1) 稳态速度误差系统 -1 秒; 2) 超调量 3) 调节时间 秒。 19控制系统如习题 19图所示。 引入反馈校正 试确定校正后系统的相角裕度 20图所示曲线I,II. 20最小相位系统校正前、后的开环对数幅频特性如习题 (1)画出串联校正装置的对数幅频特性; (2)写出串联校正装置的传递函数。 习题7 1试求aK的Z变换。 2已知。 试求X(z)。 3已知。 试求X(kT)。 4已知。 试求X(kT)。 5根据下列G(s)求取相应的脉冲传递函数G(z) 6试分析图示离散系统的输出表达式Y(z) 7离散系统如图所示(T=1s)。 求 1)当K=8时分析系统的稳定性。 2)当系统临界稳定时K的取值 8系统结构图如图所示,其中系统的稳态误差。 s K=10,T=0.2s 输入函 2r(t)=1(t)+t+0.5t,求 9统系的统临结界构图如图所示。 求当K值 Ts=1s时和Ts=0.5s时,系 10离散系统下,图中,试确定使系统稳定时,K的取值范围,并确定采 样周期Ts对系统稳定性的影响(Ts>0)。 11系统结构图如图所示, 图中 ,。 试绘制12()的 GGw 对数频率特性(伯德图),并求出相角稳定裕度等于45度时K的取值 习题8 1判断下图所对应的系统是否稳定;-1/N(A)与G(jw)的相交点是否为稳定的自持震荡点 2非线性系统如图所示。 试用描述函数法,确定线性部分的传递函数如下列情况时,系统是否产生自持震荡,若产生自持震荡,求自持震荡的频率及振幅。 图中,G(s)有两种情况: 3非线性系统如图所示 图中 试用描述函数法,分析 K=10时,系统的稳定性,并求K的临界值 4非线性系统如图所示。 试确定自震的振幅和频率。 图中, 5非线性系统如图所示。 设a=1,b=3 电器的参数a、b应如何调整 用描述函数法分析系统的稳 定性, 图中, 为了使系统稳定, 6非线性系统如图所示。 用描述函数法确定自震荡的频率和振幅。 图中, 7非线性控制系统如图所示。 试用描述函数法分析系统的稳定性。 图中 8 K1、K2、M、T1、 非线性系统如图所示,试用描述函数法讨论系统发生自持震荡时,参数 T2应满足的条件。 图中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 习题