全等三角形证明中考题精选有答案.docx
- 文档编号:5631375
- 上传时间:2022-12-29
- 格式:DOCX
- 页数:28
- 大小:404.33KB
全等三角形证明中考题精选有答案.docx
《全等三角形证明中考题精选有答案.docx》由会员分享,可在线阅读,更多相关《全等三角形证明中考题精选有答案.docx(28页珍藏版)》请在冰豆网上搜索。
全等三角形证明中考题精选有答案
八年级上学期全等三角形证明题
一.解答题(共10小题)
1.(2013•泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:
BE=CF.
2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是 _________ ;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 _________ .
(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想
(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.
3.(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:
CF=DG;
(2)求出∠FHG的度数.
4.(2012•阜新)
(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?
直接写出你猜想的结论;
②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?
请说明理由.
(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在
(1)中的位置关系仍然成立?
不必说明理由.
甲:
AB:
AC=AD:
AE=1,∠BAC=∠DAE≠90°;
乙:
AB:
AC=AD:
AE≠1,∠BAC=∠DAE=90°;
丙:
AB:
AC=AD:
AE≠1,∠BAC=∠DAE≠90°.
5.(2009•仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=
BD,EN=
CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是 _________ ;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:
AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
6.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE _________ CF;EF _________ |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 _________ ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
7.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:
如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:
AB+AD=
AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.
(1)特殊情况入手添加条件:
“∠B=∠D”,如图2,可证AB+AD=
AC;(请你完成此证明)
(2)解决原来问题受到
(1)的启发,在原问题中,添加辅助线:
如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)
8.(2007•常德)如图,已知AB=AC,
(1)若CE=BD,求证:
GE=GD;
(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)
9.(2006•泰安)
(1)已知:
如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:
①AC=BD;②∠APB=60度;
(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为 _________ ;∠APB的大小为 _________ ;
(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为 _________ ;∠APB的大小为
10.(2005•南宁)(A类)如图,DE⊥AB、DF⊥AC.垂足分别为E、F.请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).
①AB=AC;②BD=CD;③BE=CF
已知:
DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BD=CD
求证:
BE=CF
已知:
DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BE=CF
求证:
BD=CD
已知:
DE⊥AB、DF⊥AC,垂足分别为E、F,BD=CD,BE=CF
求证:
AB=AC
(B类)如图,EG∥AF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).
①AB=AC;②DE=DF;③BE=CF
已知:
EG∥AF,AB=AC,DE=DF
求证:
BE=CF
新人教版八年级上学期全等三角形证明题
参考答案与试题解析
一.解答题(共10小题)
1.(2013•泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:
BE=CF.
考点:
全等三角形的判定与性质.1125860
专题:
证明题.
分析:
根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.
解答:
证明:
∵AD是△ABC的中线,
∴BD=CD,
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,
,
∴△BDE≌△CDF(AAS),
∴BE=CF.
点评:
本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.
2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是 DE∥AC ;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 S1=S2 .
(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想
(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.
考点:
全等三角形的判定与性质.1125860
专题:
几何综合题;压轴题.
分析:
(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=
AB,然后求出AC=BE,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;
(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.
解答:
解:
(1)①∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°﹣∠B=90°﹣30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=
AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2;
故答案为:
DE∥AC;S1=S2;
(2)如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,
,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2;
(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF=S△BDE,
过点D作DF2⊥BD,
∵∠ABC=60°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=
×60°=30°,
∴∠CDF1=180°﹣30°=150°,
∠CDF2=360°﹣150°﹣60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=
×60°=30°,
又∵BD=4,
∴BE=
×4÷cos30°=2÷
=
,
∴BF1=
,BF2=BF1+F1F2=
+
=
,
故BF的长为
或
.
点评:
本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.
3.(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:
CF=DG;
(2)求出∠FHG的度数.
考点:
全等三角形的判定与性质.1125860
分析:
(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;
(2)根据全等三角形的对应角相等,即可证得∠DHF=∠CBF=60°,从而求解.
解答:
(1)证明:
∵在△CBF和△DBG中,
,
∴△CBF≌△DBG(SAS),
∴CF=DG;
(2)解:
∵△CBF≌△DBG,
∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,
∴∠DHF=∠CBF=60°,
∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.
点评:
本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.
4.(2012•阜新)
(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?
直接写出你猜想的结论;
②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?
请说明理由.
(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在
(1)中的位置关系仍然成立?
不必说明理由.
甲:
AB:
AC=AD:
AE=1,∠BAC=∠DAE≠90°;
乙:
AB:
AC=AD:
AE≠1,∠BAC=∠DAE=90°;
丙:
AB:
AC=AD:
AE≠1,∠BAC=∠DAE≠90°.
考点:
全等三角形的判定与性质.1125860
专题:
几何综合题;压轴题.
分析:
(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF;
②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;
(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.
解答:
解:
(1)①结论:
BD=CE,BD⊥CE;
②结论:
BD=CE,BD⊥CE…1分
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE…1分
在△ABD与△ACE中,
∵
∴△ABD≌△ACE(SAS)
∴BD=CE…1分
延长BD交AC于F,交CE于H.
在△ABF与△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE…3分
(2)结论:
乙.AB:
AC=AD:
AE,∠BAC=∠DAE=90°…2分
点评:
本题考查了全等三角形的判定与性质.SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理.注意:
在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:
直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状;另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等.
5.(2009•仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=
BD,EN=
CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是 ;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:
AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
考点:
全等三角形的判定.1125860
专题:
压轴题;探究型.
分析:
(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;
②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=
BD,EN=
CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.
(2)直接类比
(1)中结果可知AM=k•AN,∠MAN=∠BAC.
解答:
解:
(1)①BD=CE;
②AM=AN,∠MAN=∠BAC,
∵∠DAE=∠BAC,
∴∠CAE=∠BAD,
在△BAD和△CAE中
∵
∴△CAE≌△BAD(SAS),
∴∠ACE=∠ABD,
∵DM=
BD,EN=
CE,
∴BM=CN,
在△ABM和△ACN中,
∵
∴△ABM≌△ACN(SAS),
∴AM=AN,
∴∠BAM=∠CAN,即∠MAN=∠BAC;
(2)AM=k•AN,
∠MAN=∠BAC.
点评:
本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:
SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.
6.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE = CF;EF = |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ∠α+∠BCA=180° ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
考点:
直角三角形全等的判定;三角形内角和定理.1125860
专题:
几何综合题;压轴题.
分析:
由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.
解答:
解:
(1)①∵∠BCA=90°,∠α=90°,
∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,
∴∠CBE=∠ACF,
∵CA=CB,∠BEC=∠CFA;
∴△BCE≌△CAF,
∴BE=CF;EF=|BE﹣AF|.
②所填的条件是:
∠α+∠BCA=180°.
证明:
在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.
∵∠BCA=180°﹣∠α,
∴∠CBE+∠BCE=∠BCA.
又∵∠ACF+∠BCE=∠BCA,
∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,
∴△BCE≌△CAF(AAS)
∴BE=CF,CE=AF,
又∵EF=CF﹣CE,
∴EF=|BE﹣AF|.
(2)EF=BE+AF.
点评:
本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.
7.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:
如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:
AB+AD=
AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.
(1)特殊情况入手添加条件:
“∠B=∠D”,如图2,可证AB+AD=
AC;(请你完成此证明)
(2)解决原来问题受到
(1)的启发,在原问题中,添加辅助线:
如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)
考点:
直角三角形全等的判定.1125860
专题:
证明题;压轴题;开放型.
分析:
(1)如果:
“∠B=∠D”,根据∠B与∠D互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC和ABC中得出AD=AB=
AC,那么AD+AB=
AC.
(2)按
(1)的思路,作好辅助线后,我们只要证明三角形CFD和BCD全等即可得到
(1)的条件.根据AAS可证两三角形全等,DF=BE.然后按照
(1)的解法进行计算即可.
解答:
证明:
(1)∵∠B与∠D互补,∠B=∠D,
∴∠B=∠D=90°,
∠CAD=∠CAB=
∠DAB=30°,
∵在△ADC中,cos30°=
,
在△ABC中,cos30°=
,
∴AB=
AC,AD=
.
∴AB+AD=
.
(2)由
(1)知,AE+AF=
AC,
∵AC为角平分线,CF⊥CD,CE⊥AB,
∴CE=CF.
而∠ABC与∠D互补,
∠ABC与∠CBE也互补,
∴∠D=∠CBE.
∵在Rt△CDF与Rt△CBE中,
∴Rt△CDF≌Rt△CBE.
∴DF=BE.
∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=
AC.
点评:
本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.
8.(2007•常德)如图,已知AB=AC,
(1)若CE=BD,求证:
GE=GD;
(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)
考点:
全等三角形的判定与性质.1125860
专题:
证明题;压轴题;探究型.
分析:
(1)要证GE=GD,需证△GDF≌△GEC,由已知条件可根据AAS判定.
(2)若CE=m•BD(m为正数),那么GE=m•GD.
解答:
证明:
(1)过D作DF∥CE,交BC于F,
则∠E=∠GDF.
∵AB=AC,
∴∠ACB=∠ABC
∵DF∥CE,
∴∠DFB=∠ACB,
∴∠DFB=∠ACB=∠ABC.
∴DF=DB.
∵CE=BD,
∴DF=CE,
在△GDF和△GEC中,
,
∴△GDF≌△GEC(AAS).
∴GE=GD.
(2)GE=m•GD.
点评:
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSS、SAS、ASA、AAS、HL.本题的辅助线是解决题目的关键.
9.(2006•泰安)
(1)已知:
如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:
①AC=BD;②∠APB=60度;
(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为 AC=BD ;∠APB的大小为 α ;
(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为 AC=k•BD ;∠APB的大小为 180°﹣α .
考点:
全等三角形的判定;三角形内角和定理.1125860
专题:
探究型.
分析:
(1)分析结论AC=BD可知,需要证明△AOC≌△BOD,围绕这个目标找全等的条件;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 证明 考题 精选 答案