最新实验一图像变换及频域滤波.docx
- 文档编号:547525
- 上传时间:2022-10-11
- 格式:DOCX
- 页数:11
- 大小:416.62KB
最新实验一图像变换及频域滤波.docx
《最新实验一图像变换及频域滤波.docx》由会员分享,可在线阅读,更多相关《最新实验一图像变换及频域滤波.docx(11页珍藏版)》请在冰豆网上搜索。
最新实验一图像变换及频域滤波
实验一图像变换及频域滤波
实验一图像变换及频域滤波
1.实验任务
(1)编写快速傅里叶变换算法程序,验证二维傅里叶变换的平移性和旋转不变性;
(2)实现图像频域滤波,加深对频域图像增强的理解;
(3)总结实验过程(实验报告,左侧装订):
方案、编程、调试、结果、分析、结论。
2.实验环境
Windws2000/XP
3.开发工具
(1)MATLAB6.x
(2)VisualC++、VisualBasic或其它
4.实验内容及步骤
(1)产生如图3.1所示图像(128×128大小,暗处=0,亮处=255),用MATLAB中的fft2函数对其进行FFT:
源程序:
clc
a=zeros(128,128)
fory=54:
74
forx=34:
94
a(x,y)=1;
end
end
figure
(1)
a1=fft2(a);
subplot(1,2,1);
imshow(a);
subplot(1,2,2);
a2=abs(a1);
mesh(a2);
forx=1:
128
fory=1:
128
b(x,y)=(-1).^(x+y).*a(x,y);
end
end
figure
(2)
b1=fft2(b);
subplot(1,2,1);
imshow(b);
subplot(1,2,2);
b2=abs(b1);
mesh(b2);
figure(3)
t=imrotate(a,315,'nearest','crop')
t1=fft2(t);
subplot(1,2,1);
imshow(t);
subplot(1,2,2);
t2=abs(t1);
surf(t2);
①同屏显示原图和的幅度谱图;
图1.1
②若令,重复以上过程,比较二者幅度谱的异同,简述理由;
图1.2
③若将顺时针旋转45度得到,试显示的幅度谱,并与的幅度谱进行比较。
图1.3
结论:
将图1.3与图1.1比较可知,将原图移动旋转45度以后,幅度谱图仍然没的改变,图象能量依然集中在4个角.
(2)对如图3.2所示的数字图像lena.img(256×256大小、256级灰度)进行频域的理想低通、高通滤波,同屏显示原图、幅度谱图和低通、高通滤波的结果图。
源程序:
clc
a=fopen('lena.img','r');
b=fread(a,[256,256],'uchar');
fclose(a);
figure
(1)
subplot(1,2,1)
imshow(b,[0,255]);
b=fft2(b)
m=abs(b);
subplot(1,2,2)
m0=15*log(m+1.001)
surf(m)
q=b;
t=fftshift(q)
r=8;
forx=1:
256
fory=1:
256
if(x-128).^2+(y-128).^2 t(x,y)=0; end end end h2=abs(t); h02=15*log(1.001+h2) figure (2) imshow(h02,[0,255]); t=ifftshift(t); z=ifft2(t); figure(3); subplot(1,2,1) imshow(z,[0,255]); n=fft2(z); subplot(1,2,2); n=15*log(1.001+abs(n)); surf(n); a.对数字图像lena.img进行频域的理想高通,同屏显示原图、幅度谱图和高通滤波的结果图。 其中,取理想高通滤波的半径R分别为2、8和24: 原图像及其频谱图 R=2时的理想高通滤波结果图和滤波幅度谱图 R=8时的理想高通滤波结果图和滤波幅度谱图 R=24时的理想高通滤波结果图和滤波幅度谱图 注: 对理想高通滤波后的图像用直接灰度变换方法作了灰度范围的扩展。 当R=2时,滤波后的图像无直流分量,但灰度的变化部分基本上都保留了;当R=8时,滤波后的图像在文字和图像边缘部分的信息仍然保留;当R=24时,滤波后的图像只剩下文字和白条边缘等信号突变的部分。 (2)b.对数字图像lena.img进行频域的理想低通,同屏显示原图、幅度谱图和低通滤波的结果图。 其中,取理想低通滤波的半径R分别为88、24、11和5。 程序: 原图像及其幅度谱图 R=88时的理想低通滤波结果图和滤波频谱图 R=24时的理想低通滤波结果图和滤波频谱图 R=11时的理想低通滤波结果图和滤波频谱图 R=5时的理想低通滤波结果图和滤波频谱图 结论: 当R=5时,滤波后的图像很模糊,无法分辨; 当R=11时,滤波后的图像比较模糊,但基本能分辨出人脸的形状; 当R=24时,滤波后的图像有些模糊,能分辨出脸上的器官轮廓,但由于理想低通滤波器在频域的锐截止特性,滤波后的图像有较明显的振铃现象; 当R=88时,滤波后的图像比较清晰,但高频分量损失后,图像边沿与文字变的有些模糊,在图像的边框附近仍有振铃现象。 5、实验结论 1、由第一部分的实验,比较旋转后与旋转前的频谱,得出频谱旋转不变性的结论。 2、对图像的滤波与增强由了更深的理解。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 实验 图像 变换 滤波
